
Problem Set 4 Solution CS265, Autumn 2023

1. (4 pt.) Prove that (R3, ℓ2) cannot be embedded into (R2, ℓ2) with bounded distortion. In
other words, there are no functions f : R3 → R2 and constants α, β > 0 such that the
following inequality holds for all x, y ∈ R3:

β∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ αβ∥x− y∥2.

[HINT: Try a proof by contradiction. How should the grid Gn := {(i, j, k) : i, j, k ∈
{0, 1, . . . , n}} be embedded? Try to pin down the intuition that the embedding of the grid
would need to have lots of points fairly close together—within a smallish circle—but each
point should not be too close to any other point, and then derive a contradiction from the fact
that there just isn’t enough area to fit all those points without some being too close....]

SOLUTION: Suppose that there exists an embedding f such that

β∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ αβ∥x− y∥2

Note that for any distinct x, y ∈ Gn, we have

1 ≤ ∥x− y∥2 ≤ n
√
3

and therefore we have
β ≤ ∥f(x)− f(y)∥2 ≤ αβn

√
3

This implies that we can draw a disc of radius β
2 around each f(x) without any overlap. In

addition, because for all x ∈ Gn we have

∥f((0, 0, 0))− f(x)∥2 ≤ αβn
√
3

all these disks are contained in the disc of radius αβn
√
3 + β

2 centered at f((0, 0, 0)). This
large disc has area

π(αβn
√
3 +

β

2
)2

There are (n+1)3 non-overlapping small discs, each with area π(β/2)2, contained in the large
disc. Therefore, we must have

(n+ 1)3π(β/2)2 ≤ π(αβn
√
3 +

β

2
)2

However, since the left hand is Θ(n3) and the right side is Θ(n2), this does not hold for large
n, and so such an embedding does not exist.

2. (4 pt.) We showed that Bourgain’s embedding allows us to embed an arbitrary metric space
(X, d) with |X| = n into (Rk, ℓ1) with target dimension k being O((log n)2) and distortion
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being O(log n). Moreover, the embedding can be computed efficiently using a randomized
algorithm. Prove that the exact same embedding computed by the randomized algorithm
also achieves O(log n) distortion with high probability when the target metric is ℓ2. [This
actually holds for any ℓp metric for any p ≥ 1, but this problem just asks you to prove it for
ℓ2]. We encourage you to emphasize only the differences from the proof in the lecture notes
rather than copying the entire proof.
[HINT: Let f : X → Rk denote the relevant embedding. For any two points x, y ∈ X, we
showed that ∥f(x)−f(y)∥1 ≤ k ·d(x, y). Can we say something similar about ∥f(x)−f(y)∥2?]
[HINT: For any two points a, b ∈ Rk it holds that ∥a − b∥2 ≥ 1√

k
∥a − b∥1. This is a special

case of Hölder’s inequality.]

SOLUTION: We showed in the lecture notes that

|d(x, Si,j)− d(y, Si,j)| ≤ d(x, y)

Plugging this into the ℓp norm gives

∥f(x)− f(y)∥p =(
∑
i,j

(d(x, Si,j)− d(y, Si,j))
p)

1
p

≤(
∑
i,j

(d(x, y))p)
1
p

=k
1
pd(x, y)

We now prove that with high probability,

∥f(x)− f(y)∥p ≥
k

1
p

b · log n
d(x, y)

We construct the sets Si,j and choose c in the same way, so that

∥f(x)− f(y)∥1 ≥
k

26 log n
d(x, y)/3

Then, we have

∥f(x)− f(y)∥p ≥k
1
p
−1∥f(x)− f(y)∥1

≥k
1
p
−1 k

26 log n
d(x, y)/3

=
k

1
p

3 · 26 log n
d(x, y)

which completes the proof.

3. (11 pt.) Johnson-Lindenstrauss with ±1 entries: In the lecture notes and videos we
showed that a matrix of standard Gaussians can be used to get a dimension reducing map
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with very little distortion. However, a matrix of arbitrary real numbers can be cumbersome
to store and compute with. In this problem you’ll show that you can get essentially the same
guarantees using random matrices with ±1 entries. Throughout this problem, let A be an
m × d matrix who’s entries are independently set to +1 with probability 1/2 and otherwise
to −1, and z ∈ Rd be an arbitrary unit vector.1

In this problem, you can use the statements from previous subparts even if you do not
successfully prove them.

(a) (2 pt.) Show that E[∥Az∥22] = m.

(b) (2 pt.) For Y ∼ N(0, 1), show that for any even k ≥ 0, E[Y k] ≥ 1, and for odd k ≥ 0,
E[Y k] = 0.
[HINT: There are many solutions to this. Try to find a short one!]

(c) (2 pt.) Prove that for any independent X1, . . . , Xn and independent Y1, . . . , Yn, if, for
all integers k ≥ 0 and i = 1, . . . , n,

0 ≤ E[(Xi)
k] ≤ E[(Yi)k]

then for all integers p ≥ 0,

E

[(
n∑

i=1

Xi

)p]
≤ E

[(
n∑

i=1

Yi

)p]

(d) (4 pt.) Let B be an m × d matrix who entries are independently drawn from N(0, 1).
Prove that, for any t ≥ 0 and unit vector z, if E[et∥Bz∥22 ] is finite2, then

E[et∥Az∥22 ] ≤ E[et∥Bz∥22 ]

[HINT: For any random variable X, E[etX ] =
∑∞

k=0
tk

k!E[X
k]]

(e) (1 pt.) Show that, for any ϵ ∈ (0, 1],

Pr[∥Az∥22 ≥ m(1 + ϵ)] ≤ e−Ω(mϵ2).

If your proof is similar to that of Theorem 1 in lecture notes 8, we encourage you to
emphasize only the differences from the proof in the lecture notes rather than copying
the entire proof.

(f) (0 pt.) [Optional: this won’t be graded.] Show that, for any ϵ ∈ (0, 1],

Pr[∥Az∥22 ≤ m(1− ϵ)] ≤ e−Ω(mϵ2).

[HINT: We recommend you first show that for any independent and nonnegative ran-
dom variables X1, . . . , Xm, defining S =

∑m
i=1Xi, the probability S ≤ E[S] − ∆ is at

most exp(−Ω(∆2/
∑m

i=1 E[X2
i ])). To do so, use the inequality e−v ≤ 1− v + v2/2 which

holds for any v ≥ 0. Feel free to use the fact that for Y ∼ N(0, 1), E[Y 4] = 3.]

1You may wonder why the proof from the lecture notes doesn’t directly apply to ±1 entries. This is because, when
the entries are drawn from a normal distribution, we can use the rotational invariance of Gaussians to rotate z until
it is a standard unit vector. That trick no longer applies if the entries are ±1.

2For the purpose of your solutions, feel free to ignore this “is finite.”
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SOLUTION:

(a) By linearity of expectation,

E[∥Az∥22] = E

[
m∑
i=1

((Az)i)
2

]
=

m∑
i=1

E
[
((Az)i)

2
]

Since (Az)i for i = 1, . . . ,m all have the same distribution, it is sufficient for us to show
that E[((Az)1)2] = 1. The distribution of (Az)1 is just that of σ · z where σ ∈ {±1}d has
every element chosen uniformly and independently from {±1}. We compute,

E[((Az)1)2] = E

( d∑
i=1

σizi

)2


=

d∑
i=1

E
[
σ2
j z

2
i

]
+

d∑
i ̸=j

E [σiσjzizj ]

=

d∑
i=1

z2i = 1

where E[σiσj ] = E[σi]E[σj ] = 0 is by independence of σi, σj .

(b) For odd k, since Y k is symmetric, as long as E[Y k] is finite, it must be zero. This is
because, for f(t) the pdf of Y , the integrals

∫∞
0 f(t)tkdt and

∫ 0
−∞ f(t′)(t′)kdt′ cancel out

whenever t′ = −t. For a normal distribution, the tails decay proportional to tk · e−t2/2 =
e−Ω(t2), which is fast enough for those integrals to converge, and so E[Y k] = 0.

Now for the even case. For k = 0, for any random variable Y , E[Y 0] = 1. For k = 2,
since N(0, 1) has mean 0 and variance 1, E[Y 2] = 1. For even k ≥ 2, we apply Jensen’s
inequality,

E[Y k] = E[(Y 2)k/2] ≥ E[(Y 2)]k/2 = 1k/2 = 1.

Another approach is to use the fact (which we proved in lecture) that the moment

generating function of a standard Gaussian is M(t) = e
1
2
t2 . This means that

∞∑
k=0

tk

k!
E[Y k] = E[etY ] = e

1
2
t2 =

∞∑
n=0

t2n

2nn!

where the last equality uses the Taylor series ex =
∑∞

n=0
xn

n! substituting x = t2/2.
Comparing terms in the leftmost and rightmost sums, we see that E[Y k] = 0 if k is odd
and E[Y k] = k!

2k/2(k/2)!
= (k − 1)(k − 3) · · · 3 · 1 ≥ 1 when k is even.

(c) By linearity of expectation, it is sufficient to prove that

n∑
i1,...,ip=1

E
[
Xi1 · · ·Xip

]
≤

n∑
i1,...,ip=1

E
[
Yi1 · · ·Yip

]
.
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For any fixed setting of i1, . . . , ip, using independence of X1, . . . , Xn, there are integers
k1, . . . , kn ≥ 0 such that

E
[
Xi1 · · ·Xip

]
=

n∏
j=1

E[Xkj
j ],

namely, kj counts the number of i1, . . . , ip that are equal to j. The same decomposi-

tion holds for the Y variables. Using the assumptions of the problem,
∏n

j=1 E[X
kj
j ] ≤∏n

j=1 E[Y
kj
j ], and so the desired inequality holds.

(d) We can decompose ∥Az∥22 =
∑

i∈[m](Az)
2
i . Each term of that sum is independent and

identically distributed according to σ · z where σ ∈ {±1}d has every element chosen
uniformly and independently from {±1}. Therefore,

E[et∥Az∥22 ] = E
[
et(σ·z)

2
]m

.

We expand that moment generating function using the Taylor series for ex and linearity
of expectation to obtain,

E[et∥Az∥22 ] =

 ∞∑
p=0

tp · E[(σ · z)2p]
p!

m

The same decomposition holds for B, where α ∼ N(0, 1)d,

E[et∥Bz∥22 ] =

 ∞∑
p=0

tp · E[(α · z)2p]
p!

m

In both equations, the value inside the (·)m is nonnegative, so it is sufficient to prove
that each element of the sum satisfies the desired inequality. That is, we wish to prove
E[(σ · z)2p] ≤ E[(α · z)2p] for integers p ≥ 0. To do so, we apply part (c). For each i ∈ [d],
let Xi = σizi and Yi = αizi. Then, for any even k

E[Xk
i ] = E[σk

i ]z
k
i = zki .

By part (b), E[Y k
i ] ≥ zki for even k. For odd k both E[Xk

i ] = E[Y k
i ] = 0. The desired

result follows from part (c).

(e) We bound

Pr[∥Az∥22 ≥ m(1 + ϵ)] ≤ Pr
[
et∥Az∥22 ≥ etm(1+ϵ)]

]
≤

E
[
et∥Az∥22

]
etm(1+ϵ)

(Markov’s inequality)

≤
E
[
et∥Bz∥22

]
etm(1+ϵ)

. (part (d))

We continue as we did in the lecture notes, setting t = ϵ/4.
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(f) First, we prove the inequality in the hint. Let X1, . . . , Xm be independent nonnegative
random variables and S their sum. For any t ≥ 0,

E
[
e−tS

]
=
∏
i∈[m]

E
[
e−tXi

]
≤
∏
i∈[m]

(
1− tE[Xi] +

t2

2
E[X2

i ]

)
(e−v ≤ 1− v + v2/2 for v ≥ 0)

≤
∏
i∈[m]

e

(
−tE[Xi]+

t2

2
E[X2

i ]
)

(1 + v ≤ ev for all v ∈ R)

= exp

−tE[S] +
t2

2

∑
i∈[m]

E[X2
i ]

 .

Next, we apply Markov’s inequality. For t ≥ 0

Pr[S ≤ E[S]−∆] = Pr
[
e−tS ≥ e−t(E[S]−∆)

]
≤

E
[
e−tS

]
e−t(E[S]−∆)

≤ exp

−tE[S] +
t2

2

∑
i∈[m]

E[X2
i ] + t(E[S]−∆)


= exp

 t2

2

∑
i∈[m]

E[X2
i ]− t∆



Setting t = ∆∑
i∈[m] E[X2

i ]
gives

Pr[S ≤ E[S]−∆] ≤ exp

(
− ∆2

2
∑

i∈[m] E[X2
i ]

)
.

Next, we will apply that inequality to prove the desired result. Let X1, . . . , Xm be the
elements of Az, so that ∥Az∥22 =

∑
i∈[m]X

2
i . In part (a), we proved that E[∥Az∥22] = m.

Applying in the inequality we just proved,

Pr[[∥Az∥22] ≤ m−mϵ] ≤ exp

(
− ϵ2m2

2
∑

i∈[m] E[X4
i ]

)
.

Each Xi is identically distributed, so it’s enough to prove that E[X4
i ] = O(1). Let

Y1, . . . , Ym be the elements of Bz, where B is defined as in part (d). In the lecture
notes, we proved that Yi is distributed as a normal with mean 0 and variance 1, which
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means that E[Y 4
i ] = 3. By the same argument made in part(d), E[X4

i ] ≤ E[Y 4
i ] = 3. We

conclude that

Pr[[∥Az∥22] ≤ m(1− ϵ)] ≤ exp

(
−ϵ2m2

6m

)
= e−

mϵ2

6 .
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