
CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #12: The Constructive Lovasz Local Lemma
(Moser’s Entropic Proof)

Gregory Valiant*, updated by Mary Wootters

November 2, 2023

1 Introduction
Last class we saw the statement and proof of the existential Lovasz Local Lemma. Today, we will
see a constructive (algorithmic) version of the theorem. There has been a long progression of work
towards a strong algorithmic version of the theorem over the past thirty years (e.g. [3, 2, 6, 4, 9, 7, 8,
5, 1]). In order to phrase an algorithmic version of the theorem from last class, it will be convenient
to slightly restrict the set of events and probability distributions that we will consider.

Let V be a finite set of independent random variables, and let A denote a finite set of events that
are determined by V . That is, each event A ∈ A maps the set of assignments of V to {0, 1}.

Definition 1. Given the set of independent random variables V and set of events A determined
by the variables of V , define the relevant variables for an event A ∈ A, denoted vbl(A) ⊂ V
to be the smallest subset of variables that determine A. Additionally, for an event A ∈ A, let
Γ(A) = {B : vbl(A) ∩ vbl(B) ̸= ∅} denote the set of events that share variables with A, and note
that A is mutually independent from the set A \ Γ(A).

The following algorithm is one extremely natural approach for finding an assignment to the
variables that avoids all the events A :

Algorithm 2. FIND ASSIGNMENT
Given V , A:

• Choose a random assignment σv for each of the random variables v ∈ V .

• While there exists an A ∈ A such that A(σ) = 1:

– Choose (arbitrarily according to any scheme, randomized or
deterministic) an event A with A(σ) = 1, and update σ by
re-selecting a random assignment to the variables vbl(A).

*©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1

The following theorem, due to Moser and Tardos in 2010 [8], shows that the above algo-
rithm will, with high probability, successfully terminate quickly. The following formulation closely
matches the guarantees of the “asymmetric” LLL that was mentioned in the previous lecture notes.

Theorem 1. [8] Let V be a finite set of independent random variables. Let A be a finite set of
events determined by the random variables in V . If there exists an assignment x : A → (0, 1) such
that for all A ∈ A,

Pr[A] ≤ x(A)
∏

B∈Γ(A)\{A}

(1− x(B)),

then Algorithm 2 will find an assignment to the variables V such that no event of A occurs. Addi-
tionally, the expected number of “re-randomizations” is bounded by

∑
A∈A

x(A)
1−x(A)

.

The above theorem implies the following algorithmic version of the simpler (symmetric) LLL:

Corollary 3. Let V be a finite set of independent random variables. Let A be a finite set of events
determined by the random variables in V . If for all A ∈ A, |Γ(A)| ≤ d+1, and Pr[A] ≤ 1

e(d+1)
, then

Algorithm 2 will find an assignment to the variables V such that no event ofA occurs. Additionally,
the expected number of “re-randomizations” performed by the algorithm is bounded by O(|A|/(d+
1)).

Proof. We apply Theorem 1 and set x(A) = 1
d+1

. To see why the assumptions of the theorem hold,
note that

x(A)
∏

B∈Γ(A)\{A}

(1− x(B)) ≥ 1

d+ 1

(
1− 1

d+ 1

)d

≥ 1

e(d+ 1)

where we used our assumption that |Γ(A)| ≤ d+1 and the fact that (1− 1
d+1

)d ≥ 1/e. To conclude,
recall that we assumed that Pr[A] ≤ 1/e(d + 1), and hence the assumptions of the theorem are
satisfied.

The original proof of Theorem 1 proceeded by bounding the expected number of times each
event A ∈ A could be selected as an event whose variables are to be re-randomized (in the third line
of Algorithm 2). The proof eventually turns into an analysis of a process resembling the Galton-
Watson branching process—corresponding to the process where the “offspring” of an event A whose
variables are re-randomized corresponds to the events that are must now be fixed as a result of that
assignment (i.e. the events that are now true because of the new assignment to vbl(A)). Intuitively,
as long a the expected number of offspring is < 1, this process should die out, and we should end up
with an assignment s.t. no event occurs. Rather than going into this rather involved proof, we will
instead describe Moser’s “entropic” proof, which was not contained in the original paper.

2 Moser’s Entropic Proof
The core idea of the entropic proof is to argue that Algorithm 2 gobbles up randomness more quickly
than it actually uses it, in the sense that if the algorithm were to run for too long, then we would be
able to compress the string of random bits used by the algorithm. And, as we show below with a
simple counting argument, it is impossible to significantly compress a string of random bits. This
compression/entropic argument is extremely elegant—arguing that the expected runtime must be

2

small because otherwise, we would be able to compress the random bits used by the algorithm. I am
not aware of such an argument being used to bound the runtime of an algorithm in any other setting.
There is some recent work that is trying to generalize this sort of analysis—if you are interested,
see [1].

We begin with a useful fact, that one cannot compress a random string:

Fact 4 (The incompressibility of random strings). For any function f that maps t-bit binary strings
to distinct strings of (possibly variable) length, if s is a uniformly random binary string of length t,
then for any integer c, Pr[|f(s)| ≤ t− c] ≤ 1

2c−1 .

Proof. Since there are 2i strings of length i, there are at most
∑

i≤t−c 2
i < 2t−c+1 strings, that can

be mapped to strings of length at most t− c, and hence the probability that a random length t string
is in this set is at most 2t−c+1

2t
= 1

2c−1 .

The “entropic” proof is especially clean in the specific setting of k-SAT (rather than in the fully
general LLL setting), and we will focus on k-SAT for the rest of this lecture. Consider a k-SAT
formula over n variables, x1, . . . , xn, with clauses A1, . . . , Am, where vbl(Ai) denotes the set of
variables occurring in the ith clause, and |vbl(Ai)| = k.

Theorem 2. There is some constant c3 so that the following holds. Consider a k-SAT formula with
m clauses over n variables. If, for each clause C in the formula, there are at most d = 2k−c3 clauses
whose variable sets intersect the variables in clause C, then the formula is satisfiable.

Moreover, there is a randomized algorithm that starts with any fixed assignment, iteratively re-
randomizes the assignment to variables in some unsatisfied clause, and with probability at least 0.9
produces a satisfying assignment after at most O(m logm) re-randomizations and in time polyno-
mial in n and m.

Proof. Ultimately, we will argue that if the algorithm were to run for too long, in expectation, then
we would end up a with a protocol that compresses the random bits used by the algorithm. To do
this, let’s consider a variant of Algorithm 2:

Algorithm 5. FIND ASSIGNMENT AND PRINT STUFF
Given φ:

• Choose a random assignment σ for each of the variables that appear in
φ.

• For each clause Ci in φ that is violated by σ:

– print "Running FIX on Clause i"

– Define a global counter t, initialized to zero.

– Define a global iteration limit T, to be defined in the proof.

– FIX(φ, i, σ) (See Alg. 6 below).

• Return σ.

3

Algorithm 6. FIX(φ, i, σ)
Given a formula φ, a clause index i, an assignment σ:

• If t = T: (recall that t and T are global variables defined in
Alg. 5).

– print "Reached iteration limit, and the current assignment is σ"

– halt and return FAIL.

• t← t+ 1

• Flip k random coins, r1, . . . , rk ∈ {0, 1}.

• Update σ by setting the j’th variable that appears in the clause Ci

to rj. (For simplicity assume that exactly k variables appear in each
clause).

• Suppose that Ci1 , Ci2 , . . . , Cid+1
are the clauses in φ that share variables

with C. (Including C itself).

• For ℓ = 1, 2, . . . , d+ 1:

– If Ciℓ is violated:

* print "Trying to fix the ℓ’th child..."

* FIX(φ, iℓ, σ)

• print "All done, moving back up a level."

You can check that Algorithm 5 above is essentially the same as Algorithm 2, except for a few
changes:

• It’s written as a recursive, rather than iterative, algorithm.

• We’ve fixed the order that it corrects violated clauses in,1

• There’s an iteration cap T . If we call FIX T times without finishing, the algorithm will halt
and return FAIL.

• The algorithm makes some print statements.

You might recognize the print statements in FIX (Algorithm 6) as the sort of statements you’d
lazily write when trying to debug a recursive algorithm.2 Given the output from these print state-
ments, you can recover the execution path of the algorithm. When debugging, you could use this
information to find out what went wrong. In our case, we will use this output as a method of com-
pressing the random bits flipped by the algorithm. In more detail, you can view this algorithm in
two ways:

1. This algorithm takes as input φ, flips some random coins, makes some print statements for
some reason, and eventually returns σ or FAIL

2. This algorithm takes as input a long string of random bits, has some internal state given by φ,
possibly computes σ for some reason, and then outputs a series of print statements.

1The algorithm does work no matter what order you correct the clauses in, but it will be easier to analyze if we fix
this order, so let’s do that.

2If you don’t recognize them as this, you are a better programmer than I am...

4

We will show that the second way of viewing this algorithm is in fact a compression algorithm for
random bits. If the algorithm runs for too long, then the compression algorithm will be too good,
violating Fact 4. This will be a contradiction, implying that the algorithm cannot run for too long.

Claim 7. Consider a single call to FIX in Algorithm 5 (say, the first one). If FIX runs for T timesteps
and outputs FAIL, then it is possible to recover all of the random coins flipped by FIX, as well as the
original assignment σ that was chosen in Algorithm 5, from the print statements.

Before we prove Claim 7, let’s see why it implies the theorem.
Consider running Algorithm 5 with the iteration limit T set to T = ∞. First, observe that the

running time is at most the number of clauses times the maximum running time of each call to FIX,
and that if Algorithm 5 successfully finishes, it will return a satisfying assignment σ. This is because
each time Algorithm 5 calls FIX and successfully finishes it, it will fix the clause that it was called
on, and won’t break any other clauses. (It might accidentally fix another broken clause, but that only
helps us).

Thus, we want to show that the running time of FIX, even with T = ∞, is small. To do that,
we’ll analyze the running time with

T =
2 logm+ c2

k − log(d+ 1)− c1

for some constant c1 and c2 that will be determined below, and show that if FIX is likely to still be
running after T re-randomizations, then we’ll have a compression algorithm that is too good. This
will be a contradiction, and we’ll conclude that FIX is very likely to finish on its own before making
T re-randomizations.

Notice that as long as d+ 1 ≤ 2k−c1−1, we have T = O(logm).
So fix T as above, and suppose that FIX runs for T re-randomizations and then outputs FAIL.

How many bits of information does the output along the way? We have:

• "Running FIX on Clause i" before we call FIX. This is logm+O(1) bits. The logm
comes from needing to write down i, which could be one of m things.

• "Reached iteration limit, and the current assignment is σ" when
we hit the iteration limit. This is n+O(1) bits, because we need n bits to write down σ.

• For at most T iterations (one for nearly every call of FIX), we print "Trying to fix the
ℓ’th child...". This is T (log(d+1)+O(1)) bits, since we need log(d+1) bits to print
ℓ, which could be one of d+ 1 things.

• For at most T iterations, we print "All done, moving back up a level." This is
O(T) bits.

Altogether, we print at most
logm+ n+ (c1 + log(d+ 1))T

bits, for some constant c1 (assuming T ≥ 1).
On the other hand, by Claim 7, given the output from these print statements, we are able to

recover the random coins (the ri’s) that were flipped by the algorithm, as well as the original assign-
ment σ. The number of random bits here is n + Tk: there are n random bits in σ, and Tk flipped
during the T re-randomizations.

5

Suppose towards a contradiction that this run of FIX runs for T re-randomizations with proba-
bility greater than 1/(10m). (And with probability at most than 1/(10m), it stops before then on its
own).

Then, with probability strictly less than 1− 1/(10m), the algorithm transmits logm + n + c1T
bits, and this can be used to recover Tk + n bits of randomness. This contradicts Fact 4 (choosing
c← 1 + log(10m) in the statement of the Fact), provided that

logm+ n+ (c1 + log(d+ 1))T < n+ Tk − log(10m)− 1,

which is true by our choice of

T =
2 logm+ c2

k − log(d+ 1)− c1

for an appropriate choice of the constant c2.
We conclude that the probability that a single run of FIX going for T re-randomizations without

returning is at most 1/(10m). We can then union bound over all m times that FIX is called in Algo-
rithm 5 and conclude that with probability at least 0.9, Algorithm 5 returns a satisfying assignment
for φ, and none of the calls to FIX took longer than T iterations. With our assumption on d (the
number of clauses that share variables with any other clause), the number of re-randomizations is
thus at most O(m logm), and the total running time is polynomial in n and m.

It remains to prove the claim.

Proof of Claim 7. We need to show that, given the output of the print statements, we can recover all
of the random coin flips from the re-randomizations, as well as the original assignment σ.

To see this, we can work backwards through the algorithm. The trail of print statements will
allow us to reconstruct the recursion tree, and in particular we know which clause was being re-
randomized in each call.

Starting at the very end, we know that the algorithm ended up with some final assignment σ
(which we know because it printed it out), and we also know the identity of the last clause that it
re-randomized; let’s say that it was Cj , and that the variables in Cj are xj1 , . . . , xjk . But since there’s
only one way to assign values to xj1 , . . . , xjk that would result in Cj being violated, we know exactly
what the assignment σ was before we did the last re-randomization, and we know what the last k
randomizing bits were. Now we can work backwards, repeating this logic until we get all the way
back to the starting string σ.

This completes the proof of the theorem.

2.1 Discussion
One curious punchline that emerges from the proof is that we want the algorithm to use lots of
randomness. If, instead of using k bits of randomness with every step, it only used k/2 bits, then
the proof would not work, and we would not end up with any bound on the runtime. For example,
consider a “greedy” algorithm which, rather than re-randomizing the variables in a given clause,
tries to find an assignment to those k variables that satisfies that clause and as many other clauses
are possible. Such a greedy scheme slightly reduces the amount of randomness consumed by the
algorithm, and hence the proof from above would result in a worse bound on the expected runtime
(or a possibly infinite bound). In practice, for some classes of formula, people have observed that

6

this sort of greedy algorithm is actually much worse than actually re-randomizing. (At first, the
greedy algorithm seems to make great progress, but then things start to stagnate/loop.) The above
proof offers one conceptual explanation for why, in these settings, we want to maximize the amount
of randomness the algorithm is actually using.

References
[1] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the lovász

local lemma. Journal of the ACM (JACM), 63(3):1–29, 2016.

[2] Noga Alon. A parallel algorithmic version of the local lemma. Random Structures & Algorithms,
2(4):367–378, 1991.

[3] József Beck. An algorithmic approach to the lovász local lemma. i. Random Structures &
Algorithms, 2(4):343–365, 1991.

[4] Artur Czumaj and Christian Scheideler. Coloring nonuniform hypergraphs: A new algorithmic
approach to the general lovász local lemma. Random Structures & Algorithms, 17(3-4):213–
237, 2000.

[5] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the lovász
local lemma. Journal of the ACM (JACM), 58(6):1–28, 2011.

[6] Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In Proceed-
ings of the thirtieth annual ACM symposium on Theory of computing, pages 524–529, 1998.

[7] Robin A Moser. A constructive proof of the lovász local lemma. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pages 343–350, 2009.

[8] Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.
Journal of the ACM (JACM), 57(2):1–15, 2010.

[9] Aravind Srinivasan. Improved algorithmic versions of the lovász local lemma. In Proceedings of
the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 611–620. Citeseer,
2008.

7

