
CS265, Fall 2023

Class 13: Agenda and Questions

1 Questions/Lecture Recap

Any questions from the minilectures and/or the quiz? (Markov chains and a randomized
algorithm for 2SAT)

2 Spectral Analysis of Markov Chains

Consider the Markov chain given by:

Here’s a quick warm-up (we may do this together):

Group Work

1. What is the transition matrix for this Markov chain?

2. Suppose that you start in state 0. What is the probability that you are in state 2
after one step? Two steps? Three steps? 100 steps? (Don’t actually compute this,
just say how you would).

3. As t → ∞, what do you think is limt→∞ Pr[Xt = 2|X0 = 0]?

Next, we’ll see how we can use linear algebra to help us out in computing things like
Pr[Xt = 2|X0 = 0] for general t. We’ll focus on this particular example, but as we go, keep
in mind what you think the general principle should be.

Group Work
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1. Let

F =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


where i =

√
−1. (You may recognize F as the 4 × 4 discrete Fourier matrix, so

Fjk = 1
2
e−2πijk/4.) Notice that F is a Hermitian matrix, which means that F ∗F =

FF ∗ = I, where F ∗ denotes the Hermitian conjugate (e.g., take the transpose and
change all of the i’s to −i’s).

Convince yourself that

P = F ·


1

1/3
−1/3

1/3

 · F ∗.

Hint: Check that the columns of F are eigenvectors for P .

Note: If your linear algebra is rusty and you trust me, just remind yourself what
an eigenvector actually is. The main point here is that you should understand this
so that you can use it in the next part.

2. Given the previous part, for the Markov chain defined at the top, how would you
figure out the probability of being in state 2 at time 100, if you started at state
0? (This time, use the previous part to get an easier-to-compute-with expression.)
Come up with a statement like

Pr[Xt = 2|X0 = 0] =
1

4
±O( )

where the thing in the O() term depends on t. What is the best bound you can
get?

Before we move on to larger cycles, let’s take a minute to reflect on what just went on.
[A bit of lecture about spectral analysis. The point is that if we have a symmetric Markov
chain, we can always write the transition matrix as P = V DV ∗ for a Hermitian matrix V
and a diagonal matrix D with real values on the diagonals. Then we can write P t = V DtV ∗,
and as long as the second-largest eigenvalue is strictly less than 1, eventually Dt will look like
diag(1, tiny, tiny, . . . , tiny). This means that we can compute transition probabilities after t
steps up to very small error terms.]

In this next part, you’ll generalize what you saw above to larger cycles.

Group Work
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1. Consider the analogous Markov chain to the 4-state one that you saw before, except
that it has n states. That is, it looks like this:
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Let P ∈ Rn×n be the transition matrix for this Markov chain. Here is a fact:

P = FnDF ∗
n ,

where D is a diagonal matrix whose j’th entry is

Dj,j =
1 + 2 cos(2πj/n)

3
,

where j = 0, . . . , n − 1. (Importantly, j is zero-indexed here!) Above, Fn is the
n× n DFT, so

(Fn)j,k =
1√
n
e−2πijk/n.

(There is no question here, just acknowledge it.)

Note: As before, you can work this out for yourself if you feel like. As a hint,
check that the columns of F are eigenvectors of P with the appropriate eigenvalues.
You may find it helpful that 2 cos(x) = ex + e−x.

2. Come up with an expression for Pr[Xt = 0|X0 = 0]. You should get a kind of nasty
sum involving some cosines, but it shouldn’t be too nasty.

3. Convince yourself that as t → ∞, Pr[Xt = 0|X0 = 0] → 1/n.

4. Try to think about how fast this convergence is. That is, how large does t have to
be before Pr[Xt = 0|X0 = 0] = 1+o(1)

n
? (Don’t try to come up with a formal proof,

just some back-of-the-envelope calculations).

3



Also, how does this compare to what we saw in the mini-lectures about the walk
on the line?

Hint: You may find the Taylor expansion cos(x) = 1 − x2

2
+ x4

24
− · · · of cos(x)

about zero helpful. In particular, when x is small, cos(x) ≈ 1 − x2

2
. You may also

want to use the approximation 1− x ≈ e−x for small x liberally.
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