(CS265, Fall 2023

Class 8: Agenda and Questions

1 Announcements

e HW3 due tomorrow!

e HW4 out now!

2 Recap and Questions

We'll do a quick recap of the JL lemma and the (approximate) nearest neighbors problem.

3 A better scheme for approximate nearest neighbors,
and locality sensitive hashing

[A bit of lecture with setup. Summary below. This is also covered in the lecture notes. |
Recall the setup for c-approximate-nearest neighbors. We have a set S of size n, and
for today S C S? lives on the surface of the d-dimensional sphere. That is, S =
{x1,...,1,}, so that z; € R¥! and ||z;]|, = 1 for all i € [n].
Our goal is to come up with some data structure to store the z;’s, so that:

e We don’t use too much space (ideally, use space poly(n), where the exponent in the
polynomial doesn’t depend on d).

e Given y € S¢, we can find z; € S so that

lzi —yll2 < c- mjin z; — yll2

in time sublinear in n.

3.1 Nearest-Neighbors vs. Near Neighbors

[A bit of lecture, summary below and also in the lecture notes]

Consider the following problem, called (r, ¢)-near-neighbors. We have a set S C S? of
size n as before, and our goal is to come up with some data structure (that doesn’t use too
much space) to store the x;’s, so that the following holds.

Given y € S? so that min; ||x; — y||2 < r, we can find z; € S, in sublinear time,
so that ||z; — y|l2 < er.

It turns out that if we can solve (r, ¢)-near-neighbors (for a decent range of r’s) then we
can solve c-nearest-neighbors.

3.2 A solution to (r,c)-near-neighbors

[A bit of lecture for setup; summary below and also in the lecture notes. |
Let s, k be parameters, chosen as follows:

1
s =+/n, kzﬂgfn

Fori=1,...,s, let A; € R¥¥*! have ii.d. N(0,1) entries. For y € S, define
hi(y) = sign(Aw),

where for a vector a € R¥, sign(a) € {&1}* is just the vector whose i’th entry is +1 if a; > 0
and —1 if a¢; <0.

Group Work

1. Consider a hash function h; : S¢ — {£1}* as defined above. Explain why “h;(x) =
hi(y)” has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in R, and using them
to slice up the sphere S¢ like this:

Lots of
V\Wums
lana_ X
S d 2 %ﬁg o Cuting. e

gcl

Then h;(x) = h;(y) if and only if z and y are in the same “cell” of this
slicing. For example, in the picture below h;(z) = h;(y) # hi(z).

Hint: Use the spherical symmetry of the Gaussian distribution.

2. Explain why, for z,y € S%, and for any i = 1,..., s,

Prlhu(a) = h(w)] = (1 - M)

™

where angle(x,y) = arccos(z”y) is the arc-cosine of the dot product of x and v,
aka, the angle between z and y.

Hant: Think about the geometric intuition in the plane spanned by x and y.

3. Suppose that z,y € S¢. Fill in the blank, using the previous part:

Pr[Vi € {1,...,s} hi(z) # hi(y)] =

(Don’t worry about simplifying, you’ll do that in the next part).

4. Let z,y € S? and suppose that the angle between z and y is pretty small. Using
our choices of s and k above, along with extremely liberal use of the approximation
that 1 — x ~ ¢~ for small z, convince yourself that

PI[VZ E {1, 00 o 75}, hz(z‘) # h’l(Z/)]) exp (_n1/27angle($>y)/(2r)) .

5. Fill in the blanks (assuming that your approximation from the previous step is
valid):

(a) If angle(x,y) < r, then
Pr[3i e {1,...,s} so that h;(x) = hi(y)] > -
(b) If angle(z,y) > 5r, then

Pr[3i € {1,...,s} so that h;(z) = hi(y)] < .

Suppose that H is a family of hash functions h : S* — D. We say that H is a locality
sensitive hash (LSH) family (for the Euclidean metric, with some parameters R, C, py, p2) if:

o If ||z — y|l2 < R, then h(x) = h(y) with probability at least p;.
o If ||z —y|l2 > CR, then h(x) = h(y) with probability at most ps.

Thus, if we pretend that “angle(z,y)” was “||z — y||2”, we have just shown that the family
of random hash functions from which we chose the h; is a locality-sensitive hash family.
(Actually, formally we showed something a bit different, since we looked at the probability
of any collision over s functions drawn from the family).

In the next two problems, you’ll see how to use this LSH family to solve the approximate
near-neighbors problem.

Group Work

6. Pretend that “angle(z,y)” was “|x — y||2” everywhere.

Come up with a data structure that uses your result from problem 5b and show
that it gives a (¢, r)-near-neighbors scheme for some constant c. (It’s okay if each
query succeeds with probability 1/2 or something like that).

Hint: As your data structure, consider storing s hash tables, one for each h;. Hash
each item x € S into these tables. Given a query y, in what bucket(s) should you
look for a close-by x € S?

Explain why it’s okay to pretend that “angle(z,y)” is “||x — yl||2,” perhaps at the
cost changing the constants around.

Hint: You can use the fact that
2
—angle(z,y) < ||z — yl|2 < angle(z, y)

for any x,y € S°.

(If you have time) What is the amount of space that your data structure uses?
How much time does a query take?

Group Work

If you finish the rest, here’s some bonus stuff to think about!

1.

Why does a solution to (r,c)-near-neighbors give a solution to c-approximate-
nearest-neighbors?

. What happens if our data don’t live on the surface of S?? Explain how to still use

the analysis above.

3. Can you think of a way to come up with a better LSH family?

Can you think of a way to solve approximate near(est) neighbors without going
through LSH? Is LSH necessary?

	Announcements
	Recap and Questions
	A better scheme for approximate nearest neighbors, and locality sensitive hashing
	Nearest-Neighbors vs. Near Neighbors
	A solution to (r,c)-near-neighbors

