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1 Dimension Reduction
Previously, we saw that any metric (X, d) with |X| = n can be embedded into RO(log2 n) under any
the ℓ1 metric (actually, the same embedding works for any ℓp metic), with distortion O(log n). Here,
we describe an extremely useful approach for reducing the dimensionality of a Euclidean (ℓ2) metric,
while incurring very little distortion. Such dimension reduction is useful for a number of reasons:
on the practical side, many geometric algorithms have runtimes that scale poorly with the dimension
of the space in which they operate, so being able to reduce the dimension while preserving geometry
can be useful. Moreover, these dimension-reduction procedures have been used numerous times as
components within other algorithms (e.g. Locality Sensitive Hashing). From a theoretical side, the
JL lemma has plenty of applications throughout theoretical computer science and mathematics, in
particular to understanding high-dimensional geometry.

2 Johnson-Lindenstrauss Transformation
The randomized dimension reduction approach is essentially due to Johnson and Lindenstrauss in
1984 [7], and many variants (and de-randomizations) have been explored in the past 30 years.

Theorem 1. Given any ϵ ∈ (0, 1), and a set X ⊂ Rd with |X| = n, there exists a linear map
f : Rd → Rm with m = O( logn

ϵ2
) that embeds (X, ℓ2) into (Rm, ℓ2) with distortion at most (1 + ϵ).

Proof. We will define a randomized map, and show that it has the desired property with high prob-
ability. More precisely, we’ll first show that for any fixed x, y ∈ X , A approximately the preserves
the distance between x and y with probability o(1/n2), and then we will take a union bound over all
pairs of x and y in X .
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Let A be an m × d matrix with entries chosen independently from N(0, 1/m), and define the
map f : Rd → Rm by f(x) = Ax. Hence each of the m coordinates of f(x) are given by the
projection of x onto a d-dimensional Gaussian.

One useful trick in analyzing such Gaussian projections is the spherical symmetry of the Gaus-
sian. Hence, to analyze the distortion, for a given pair of vectors x, y, we could imagine rotating the
coordinate system so that x − y is a standard basis vector, e.g., x − y = (1, 0, 0, 0, . . . , 0). Such
a rotation does not change the distribution, and simplifies the analysis. (Exercise: prove this by
leveraging the fact that sums of Gaussians are Gaussian...)

Given that x− y is a standard basis vector, A(x− y) only depends on one row of A, and hence
||f(x)− f(y)||22 = ||x− y||22

∑m
i=1 X

2
i , where the Xi’s are independent Gaussians of variance 1/m.

Since the expected square of a zero-mean Gaussian is its variance, E[||f(x)− f(y)||22] = ||x− y||22.
Hence the theorem will follow provided we show that

∑
X2

i is sufficiently tightly concentrated about
its expectation. Specifically, if this is within a (1 + ϵ) factor of its expectation, namely ∥f(x) −
f(y)∥22 = (1 ± ϵ)∥x − y∥22, then that will imply that ∥f(x) − f(y)∥2 = (1 ± ϵ)∥x − y∥2. [The
reason we are analyzing this squared norm instead of directly analyzing the actual distance is that
the square-root would complicate the analysis.]

The probability that
∑m

i=1X
2
i is concentrated within a factor of (1 ± ϵ) of its expectation is

identical to the probability that
∑m

i=1 Z
2
i is within (1 ± ϵ) of its expectation, where Zi is drawn

from N(0, 1), so we will analyze this slightly simpler expression. To do this, we will prove a
Chernoff-style bound, leveraging the easily verified fact that for t < 1/2, E[etZ

2
] = 1/

√
1− 2t for

Z ∼ N(0, 1). We begin by bounding the probability that
∑

i Z
2
i > (1 + ϵ)m; a similar argument

will show an analogous bound for Pr[
∑

Z2
i < (1− ϵ)m].

Pr[
∑

Z2
i > (1 + ϵ)m] = Pr[et

∑
Z2
i > et(1+ϵ)m], [for t > 0]

≤ 1/(1− 2t)m/2

et(1+ϵ)m
[by Markov’s inequality, for t ∈ (0, 1/2)]

= e−m(t(1+ϵ)+(1/2) log(1−2t)).

Using the fact that log(1 − 2t) > −2t − 4t2 (for 0 < t < 1
3
), the above probability is at most

e−m(tϵ−2t2), for every t ∈ (0, 1/3). Optimizing this quadratic function tϵ − 2t2 for t yields t =

ϵ/4. Plugging this in and simplifying yields that the above probability is at most e−m ϵ2

8 . Hence by
choosing m > 17 logn

ϵ2
, this probability is o(1/n2), and hence we may perform a union bound over

all < n2/2 possible pairs of points x, y to argue that with constant probability, the embedding does
not significantly distort any of the O(n2) distances.

3 Fancier Johnson-Lindenstrauss Transformations
The original paper of Johnson and Lindenstrauss actually considered a uniformly random orthogonal
projection: that is, choose a uniformly random m-dimensional subspace, and let the rows of A be
an orthogonal basis for that subspace. The version presented above, with i.i.d. Gaussians, is a bit
faster to compute. In fact, an even easier version with random ±1 random variables instead of the
Gaussians will work too (see, e.g., [1]).

However, there are even more nicely structured Johnson-Lindenstrauss Transformations out
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there. In this section, we’ll give a quick summary of some of the cool work that’s been done re-
cently in this area.

The goal of this section is just to give you an idea of what’s out there and some pointers to the
literature—don’t worry about the technical details of these results unless you are interested in them.

3.1 Recent Advances: Fast Johnson-Lindenstrauss Transformations
To achieve distortion ϵ for a set of n points in Rd, using the above scheme would require time
O(dm) = O(d logn

ϵ2
) to compute the embedding of each datapoint. Can we hope to speed this up?

The most naive hope would be that there is a variant of the Johnson-Lindenstrauss scheme in
which the random projection matrix, A, can be chosen to be sparse—if most of the entries are 0,
then we can multiply by A in time proportional to the number of nonzero entries, instead of time
(which is less than dm if A is sparse). Unfortunately, the guarantees of the theorem erode for sparse
A, and this won’t work.

However, in 2006 Ailon and Chazelle introduced the Fast Johnson-Lindenstrauss which is a
clever twist on this. Roughly, instead of multiplying by a sparse A, we transform our data into the
Fourier basis (recall that the Fourier transform is just multiplication by a d × d matrix, which has
the property that this can be computed in time O(d log d)), and then multiply by our sparse A. This
corresponds to multiplying by a dense A in the standard basis, and the analysis works out (intuitively,
as long as A is a bit random, and not sparse, then things are okay). This ends up with runtime
O(d log d+ polylogn

ϵ2
), which is much better than O(d log n/ϵ2) in the many cases when logn

ϵ2
≫ log d.

Feel free to check out the original paper [2]—as well as some follow-up papers [3, 9]—for more
details; the state-of-the-art1 gives a matrix with O(d log d) embedding time with a target dimension
of O(log n polylog (d)/ϵ2).

3.2 Recent Advances: Sparse Johnson-Lindenstrauss Transformations
The Johnson-Lindenstrauss transform we saw in Section 2, as well as the fast ones in Section 3.1,
are dense: lots of the entries are non-zero. In many applications, it can be helpful if the transform is
sparse. This both speeds up the time it takes to apply the transformation, and also enables extremely
efficient sparse updates. For example, suppose you have already computed Ax, but now you want
to update the i’th coordinate of x, say x′ ← x+ c · ei, where c ∈ R and where ei is the i’th standard
basis vector. How quickly can you compute the updated Ax′? If A is sparse, you just have to add c
times the i’th column of A—which is a sparse vector—to the vector Ax you have already computed.

A sparse Johnson-Lindenstrauss transform was given by Dagupta, Kumar and Sarlós in 2010 [5].
The approach is based on random hash matrices: the first idea is to consider a matrix H ∈ {0,±1}m×d

that is a random hash matrix: each row corresponds to a bucket, and each column column corre-
sponds to an item. Each column of the matrix has exactly one nonzero in a random location, which
is ±1 randomly. It turns out that this construction won’t work as a JL transform unless the target
dimension is pretty big. (Why?) So instead, the idea is to start with Õ(1/ϵ) such hash matrices, and
add them together. This turns out to do the trick. This construction was later derandomized by Kane
and Nelson [8].

1The last time I checked...
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3.3 Recent Advances: Stronger Johnson-Lindenstrauss Transformations
Recall the theorem we proved above, slightly restated:

Theorem 2. Given any ϵ ∈ (0, 1), and a set X ⊂ Rd with |X| = n, there exists a map f : Rd → Rm

with m = O( logn
ϵ2

) such that for all x, y ∈ X ,

∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ϵ)∥x− y∥2.

A sequence of recent works, culminating in the 2019 paper [10] established that an analog of the
above theorem holds, where we replace “for all x, y ∈ X”, with “for all x ∈ X and for all y ∈ Rd.
Hence there is a mapping that preserves the distances from any point in Rd to any point in X . The
construction of this mapping is much more complicated than the random projection that we analyzed
above, and, in particular, the mapping is non-linear!

4 Introduction to Nearest Neighbor Search
A useful primitive in many data analysis and machine learning algorithms is the ability to efficiently
find similar data points to a given point of interest. For example, given a the text from a webpage,
or an image, the ability to quickly figure out similar documents or images seems extremely useful.
(Of course, one must make sure that the comparison metric and the feature space we are looking in
is appropriate.) This problem is known as “nearest neighbor search”.

More formally, the set-up is the following. We have a set S of n vectors S = {x1, . . . , xn} ⊂ Rd,
and we want to make some data structure, which ideally doesn’t take space much more than O(nd),
the amount of space needed to represent the n input points, and which can efficiently handle queries
of the form “which point xi is closest to y?” for y ∈ Rd.

Naively, we can have a data structure that takes space O(nd) and query time O(nd), just by
storing all the points and doing a linear scan through them to find the closest point to y. However,
for small d, we can do much better. For example, if d = 1, we can have space O(n) and query
time O(log n), by storing the xi in sorted order (this makes sense for one-dimensional data) and just
doing binary search. However, this idea turns out not to scale so well when d grows. For example,
you can get algorithms that run in time poly(d) · log n, which is great, but the space scales like nO(d),
which is not great.

Can we do better? It turns out that we can if we allow ourselves a little bit of slack. That is,
instead of returning the exact nearest neighbor to y, we can try to return an approximate nearest
neighbor. Formally, given c, our goal will be to return xi so that

∥xi − y∥2 ≤ c ·min
j
∥xj − y∥2.

One way to do this is to use a Johnson-Lindenstrauss transform, to “beat” the curse of di-
mensionality. If we try to do this in the most straightforward way, this does improve things, al-
though it doesn’t quite get us to our goal. For example, if we first apply a JL transform to our
data S = {x1, . . . , xn} (with, say, ϵ = 1/2), then we’ll get a data set {x′

1, . . . , x
′
n} ⊆ Rd′ , for

d′ = O(log n). If we run a nearest neighbors algorithm on the image (for example, the one men-
tioned above with query time poly(d) log n), the query time will be poly(d′) · log n = polylog (n)
(great!), and space needed will be nO(d′) = nO(logn). This might be an improvement if d ≫ log n,
but it’s still not the linear-in-n that we were hoping for.
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Note: At this point we are done with the material covered in the before-class videos. The
following section is for reference after class.

5 Locality Sensitive Hashing
In order to do better for approximate nearest neighbors, we will use something called locality-
sensitive hashing. Locality sensitive hashing schemes, as their name suggests, are hashing schemes
with the property that points that are close have a higher probability of hashing to the same bucket.

The idea is the following. Given a locality-sensitive hashing scheme, which hashes points to
other points that are close to them, a nearest-neighbor search can be performed by simply hashing
the query vector v, and then checking which vectors are hashed to the same bucket. Since their
introduction in the late 1990’s in a paper of Indyk and Motwani (from Stanford) [6], there has been
a huge body of research describing locality sensitive hashing schemes for various metrics, with
various tradeoffs between the various parameters (storage space, preprocessing time, etc.). Despite
the volume of research, many of the most basic questions are still open—we currently do not know
if the schemes we have are near optimal or not. See [4] for a (only slightly outdated) survey.

Before we describe and analyze such a scheme, we will further relax our problem, to “near”
neighbors, rather than “nearest” neighbors. In this version of the problem, we are also given a radius
r, and a promise that there exists some xi ∈ S (our data set) so that ∥y − xi∥2 ≤ r. The goal is to
find some xj ∈ S so that ∥y − xj∥2 ≤ c · r, for some approximation factor c.

Notice that if we can solve c-approximate-near-neighbors, then we can solve c-approximate
nearest neighbors, up to some additive error. Indeed, suppose that we know that S has radius R
(let’s say that R = 1 after re-scaling things appropriately). Then we can solve the c-approximate-
near-neighbor problem for r = ϵ, r = 2ϵ, r = 4ϵ, r = 8ϵ, and so on, up to r = 1. This is an extra
log(1/ϵ) steps, and we’ll always find some xj ∈ S so that

∥y − xj∥2 ≤ max{2c ·min
i
∥y − xj∥2, cϵ}.

(Why?) Note that this doesn’t quite solve the c-approximate nearest neighbors problem because of
this cϵ term, but by making ϵ sufficiently small we can effectively solve the problem.

Thus, we focus on the c-approximate near-neighbor problem, for r = ϵ. (It’s only going to
geteasier as r gets larger, so let’s look at the case where r is as small as it’s going to get).

We now explore an extremely simple locality sensitive hashing scheme, based on the Johnson-
Lindenstrauss transformation, that illustrates some of the properties and intuitions of more complex
schemes:

Algorithm 1. RANDOM HYPERPLANE HASHING
Input: n points in d dimensions, integer s representing the number of hash
tables we will construct, and an integer k representing the length of each
hash.

• Pick s matrices of dimension k × d, denoted A1 . . . , As, by drawing each
entry of Ai independently from N(0, 1).

• For every point x, hash it to each of the s hash tables as follows:
for i ∈ [1, . . . , s], set x’s ith hash to be the length k vector sign(Aix)
whose jth index is ±1 according to the sign of the jth coordinate of
the vector Aix.
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First we argue that the points that get hashed to the same bucket as x will tend to have a small
angle with x:

Claim 2. For x, y ∈ Rd, the probability that they are hashed to the same bucket in the ith hash table
is (1− angle(x,y)

π
)k, where angle(x, y) denotes the angle, in radians between the vectors x and y.

Proof. Consider the jth index of the hash of x and y. The entries corresponding to x and y will
agree if, and only if points x and y lie on the same side of the hyperplane defined by the the jth row
of matrix A. Because of the spherical symmetry of the d dimensional Gaussian, the probability that
this random hyperplane splits the points x and y is exactly equal to the probability that a random
line in the 2-dimensional plane spanned by x, y, passing through the origin, splits points x and y.
This probability is exactly angle(x, y)/π. The claim now follows from the independence of the k
coordinates.

Hence for x, y ∈ Rd, the probability that they are not hashed to the same bucket in any of the s
hash tables is approximately

(1− (1− angle(x, y)

π
)k)s ≈ e−s·e−k·angle(x,y)/π

.

To see the implications of this statement, consider setting k = π logn
2ϵ

, and s =
√
n. For this

setting of parameters, if angle(x, y) ≤ ϵ, then the probability that they will hash to the same bucket
in at least one of the hash tables is roughly

1− e−s·e−k·angle(x,y)/π ≥ 1− e−s/
√
n = 1− 1/e > 1/2.

On the other hand, if angle(x, y) ≥ 5ϵ, then the probability that they will hash to the same
bucket in at least one of the hash tables is roughly

1− e−s·e−k·angle(x,y)/π ≤ 1− e−sn5/2 ≈ 1/n2.

Hence, if we have hashed n points, via a union bound, with constant probability, no pair x, y with
angle(x, y) > 5ϵ will collide in any of the s hash tables.

The above reasoning shows that this hashing approach will allow us to construct a set of hash
tables with the following properties. Suppose we have hashed a set of points S = {x1, . . . , xn}.

• Given a point y ∈ Rd, it takes time O(d
√
n logn
ϵ

) to hash y.

• If there exists some x ∈ S with angle(x, y) < ϵ, then with constant probability there’s some
x′ so that angle(x′, y) ≤ 5ϵ, and x′ and y are hashed to the same bucket in at least one of the√
n hashes.

• For any x ∈ S with angle(x, y) ≥ 5ϵ, it’s very unlikely that x will collide with y in any
bucket.

If it were the case that angle(x, y) were the distance we cared about, this would give us a 5-
approximate near neighbors scheme! (And, as noted above, repeating this log(1/ϵ) times for various
different values of “r” will basically give us a 10-approximate nearest-neighbors scheme). The
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scheme is just to check each of the
√
n hashes; if we every find an x′ that lands in y’s bucket, return

it.
Of course, we care about ∥x− y∥2, not angle(x, y). If x and y have norm 1, then it’s always true

that
angle(x, y) ≤ ∥x− y∥2 ≤

2

π
angle(x, y).

Indeed, angle(x, y), when measured in radians, is just the arc length between x and y. This is
always greater than the Euclidean distance between x and y, and the discrepancy is greatest when
∥x − y∥2 = 2, and x and y are on the opposite sides of a sphere. In that case the ratio that they are
off by is 2/π.

Thus, if we additionally think that our data live on the surface of a sphere (which happens), this
gives us an approximate nearest-neighbors scheme. If the data don’t live on the surface of a sphere,
but live in a bounded region, it turns out that we can project them onto the surface of a large sphere
that’s one dimension higher, without too much distortion.

The amount of storage needed for this scheme is nO(1). We need O(nd) to store the points, and
then for each of s =

√
n hash functions we need to store the hash tables, each of which have 2k

buckets. That’s a total of O(
√
n2O(logn/ϵ)) = nO(1/ϵ). Since we are assuming that ϵ is a constant,

this is nO(1). We also need to store kds random Gaussians to store the matrices Ai, so that’s another
O(ϵ−1d

√
n), and assuming d ≤ n, this is also nO(1). This isn’t the linear-in-n that we were hoping

for, but it’s definitely better than the O(nlogn) that we saw in the previous section.
The query time is O(ϵ−1d

√
n log n) to hash y, plus the amount of time it takes to go through

the
√
n buckets that y hashes to to look and see if there’s anything there. This takes time O(

√
n)

(notice that we don’t need to do any more processing if we find something, we just return it without
thinking). Thus, the running time is O(ϵ−1d

√
n log n). If d is small (say d ≈ log n or something like

that, or even d as large as n0.49) then this is sublinear in n!
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