Problem Set 8

Due: Friday December 8 at 11:59PM PST Group members: INSERT NAMES HERE

Please follow the homework policies on the course website.

1. (5 pt.) Sampling Without Replacement

Suppose there are n total balls, of which m are red. We sample k of the balls uniformly without replacement.¹ Let Z be the random variable denoting how many of the k balls are red. In this problem, you will show that Z is concentrated around its mean.

- (a) (1 pt.) Show that $\mathbb{E}[Z] = \frac{km}{n}$.
- (b) (4 pt.) When $k \ge 1$, show that $\Pr[|Z \mathbb{E}[Z]| \ge \lambda] \le 2e^{-\lambda^2/(2k)}$ for any $\lambda > 0$. [HINT: Try applying the Azuma-Hoeffding tail bound to a Doob martingale. When applying Azuma-Hoeffding to a martingale $\{Z_t\}$, feel free to provide a short/intuitive explanation for why $|Z_i - Z_{i-1}| \le c_i$ rather than a rigorous proof.]
- (c) **[Optional: this won't be graded.]** When k is close to n, a tighter bound than that from part (b) holds.
 - i. (0 pt.) When k = n, explain why $\Pr[Z = \mathbb{E}[Z]] = 1$.
 - ii. (0 pt.) When $1 \le k \le n-1$, show that $\Pr[|Z \mathbb{E}[Z]| \ge \lambda] \le 2e^{-\lambda^2/(2v)}$ where v is defined as

$$v \coloneqq \sum_{i=1}^{k} \left(1 - \frac{k-i}{n-i} \right)^2.$$

iii. (0 pt.) Show that $v \leq O(k(n-k)/n)$. This shows that the bound from part (c), ii is tighter than the bound from part (b) when k is close to n.

SOLUTION:

2. (11 pt.) Reaching Consensus

This question considers a simple and fairly natural model of the dynamic of how opinions shift over time in a group.

Suppose there is an undirected graph G = (V, E) whose vertices represent the group members and a pair of members are friends if and only if they are connected by an edge. For simplicity, we assume that G contains none of the following: 1) self-loops, 2) multiple edges connecting the same pair of vertices, or 3) isolated vertices, i.e., vertices with no edge on them. Let S be the set of possible "opinions" on some topic, and lets suppose that each person has one and only one opinion on the topic at a time. (For concreteness, think of $S = \{A, B, C, ...\}$.) We can represent the opinions of the group members by a mapping $\sigma : V \to S$ where the group member corresponding to vertex v has opinion $\sigma(v)$.

¹Note that this only makes sense when $k, m \leq n$.

The opinions σ of the group members evolve due to discussions between friends. We model the evolution of σ by the following time-homogeneous Markov chain: starting from the initial opinion σ_0 , σ changes from σ_{t-1} to σ_t at step t as follows. Independently for every vertex v, we flip a fair coin. If the outcome is "heads", $\sigma_t(v)$ remains the same as $\sigma_{t-1}(v)$; otherwise, $\sigma_t(v)$ becomes $\sigma_{t-1}(v')$ for a uniformly random neighbor v' of v. In short, every group member keeps their own opinion with probability 1/2, and takes one of their friends' opinion with the remaining 1/2 probability.

In this problem, we will determine the likelihood that the group members reach a certain consensus, given their initial opinions.

- (a) (1 pt.) If G is disconnected and |S| > 1, show that there exist initial opinions σ_0 of the members for which consensus is never reached.
- (b) (3 pt.) If G is connected, show that consensus is eventually reached almost surely. That is, show that as the number of steps goes to infinity, the probability that consensus has been reached approaches 1.
- (c) (2 pt.) Let X_t be the number of group members who have some opinion, say $A \in S$ after step t. Give an example where $(X_t)_{t\geq 0}$ is not a martingale with respect to $(\sigma_t)_{t\geq 0}$. The example should be one specific tuple (G, S, σ_0) .
- (d) (3 pt.) Let Y_t be the sum of the degrees of the vertices v corresponding to the group members with opinion A after step t. Prove that $(Y_t)_{t\geq 0}$ is a martingale with respect to $(\sigma_t)_{t\geq 0}$.
- (e) (2 pt.) Assume that G is connected. What is the probability that all members of the group end up with opinion A (ie after some time, everyone has opinion, $A \in S$, for the rest of time)? Express your answer in terms of G and the initial opinion σ_0 of the group members.

[HINT: Try applying the martingale stopping theorem to the martingale $(Y_t)_{t>0}$.]

SOLUTION: