Due: Friday December 8 at 11:59PM PST
Group members: INSERT NAMES HERE
Please follow the homework policies on the course website.

1. (5 pt.) Sampling Without Replacement

Suppose there are n total balls, of which m are red. We sample k of the balls uniformly without replacement. ${ }^{1}$ Let Z be the random variable denoting how many of the k balls are red. In this problem, you will show that Z is concentrated around its mean.
(a) (1 pt.) Show that $\mathbb{E}[Z]=\frac{k m}{n}$.
(b) (4 pt.) When $k \geq 1$, show that $\operatorname{Pr}[|Z-\mathbb{E}[Z]| \geq \lambda] \leq 2 e^{-\lambda^{2} /(2 k)}$ for any $\lambda>0$.
[HINT: Try applying the Azuma-Hoeffding tail bound to a Doob martingale. When applying Azuma-Hoeffding to a martingale $\left\{Z_{t}\right\}$, feel free to provide a short/intuitive explanation for why $\left|Z_{i}-Z_{i-1}\right| \leq c_{i}$ rather than a rigorous proof.]
(c) [Optional: this won't be graded.] When k is close to n, a tighter bound than that from part (b) holds.
i. (0 pt.) When $k=n$, explain why $\operatorname{Pr}[Z=\mathbb{E}[Z]]=1$.
ii. (0 pt.) When $1 \leq k \leq n-1$, show that $\operatorname{Pr}[|Z-\mathbb{E}[Z]| \geq \lambda] \leq 2 e^{-\lambda^{2} /(2 v)}$ where v is defined as

$$
v:=\sum_{i=1}^{k}\left(1-\frac{k-i}{n-i}\right)^{2} .
$$

iii. (0 pt.) Show that $v \leq O(k(n-k) / n)$. This shows that the bound from part (c), ii is tighter than the bound from part (b) when k is close to n.

SOLUTION:

2. (11 pt.) Reaching Consensus

This question considers a simple and fairly natural model of the dynamic of how opinions shift over time in a group.

Suppose there is an undirected graph $G=(V, E)$ whose vertices represent the group members and a pair of members are friends if and only if they are connected by an edge. For simplicity, we assume that G contains none of the following: 1) self-loops, 2) multiple edges connecting the same pair of vertices, or 3) isolated vertices, i.e., vertices with no edge on them. Let S be the set of possible "opinions" on some topic, and lets suppose that each person has one and only one opinion on the topic at a time. (For concreteness, think of $S=\{A, B, C, \ldots\}$.) We can represent the opinions of the group members by a mapping $\sigma: V \rightarrow S$ where the group member corresponding to vertex v has opinion $\sigma(v)$.

[^0]The opinions σ of the group members evolve due to discussions between friends. We model the evolution of σ by the following time-homogeneous Markov chain: starting from the initial opinion σ_{0}, σ changes from σ_{t-1} to σ_{t} at step t as follows. Independently for every vertex v, we flip a fair coin. If the outcome is "heads", $\sigma_{t}(v)$ remains the same as $\sigma_{t-1}(v)$; otherwise, $\sigma_{t}(v)$ becomes $\sigma_{t-1}\left(v^{\prime}\right)$ for a uniformly random neighbor v^{\prime} of v. In short, every group member keeps their own opinion with probability $1 / 2$, and takes one of their friends' opinion with the remaining $1 / 2$ probability.

In this problem, we will determine the likelihood that the group members reach a certain consensus, given their initial opinions.
(a) ($\mathbf{1} \mathbf{p t}$.) If G is disconnected and $|S|>1$, show that there exist initial opinions σ_{0} of the members for which consensus is never reached.
(b) ($\mathbf{3} \mathbf{~ p t}$.) If G is connected, show that consensus is eventually reached almost surely. That is, show that as the number of steps goes to infinity, the probability that consensus has been reached approaches 1 .
(c) (2 pt.) Let X_{t} be the number of group members who have some opinion, say $A \in S$ after step t. Give an example where $\left(X_{t}\right)_{t \geq 0}$ is not a martingale with respect to $\left(\sigma_{t}\right)_{t \geq 0}$. The example should be one specific tuple (G, S, σ_{0}).
(d) ($\mathbf{3} \mathbf{~ p t .) ~ L e t ~} Y_{t}$ be the sum of the degrees of the vertices v corresponding to the group members with opinion A after step t. Prove that $\left(Y_{t}\right)_{t \geq 0}$ is a martingale with respect to $\left(\sigma_{t}\right)_{t \geq 0}$.
(e) (2 pt.) Assume that G is connected. What is the probability that all members of the group end up with opinion A (ie after some time, everyone has opinion, $A \in S$, for the rest of time)? Express your answer in terms of G and the initial opinion σ_{0} of the group members.
[HINT: Try applying the martingale stopping theorem to the martingale $\left(Y_{t}\right)_{t \geq 0}$.]

SOLUTION:

[^0]: ${ }^{1}$ Note that this only makes sense when $k, m \leq n$.

