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1 Introduction
Prime numbers are extremely useful, and are an essential input to many algorithms in large part due
to the algebraic structure of arithmetic modulo a prime. In everyday life, perhaps the most frequent
use for prime numbers is in RSA encryption, which requires quite large primes (typically ≥ 128-bits
long). Fortunately, there are lots of primes—for large n, the probability that a random integer less
than n is prime is roughly 1/ log n. (All logarithms are to the base e unless otherwise noted.) Rather
tight bounds on the density of primes are known, and have been improved over the past century:

Theorem 1 ( [7]). For all n ≥ 55, the number of prime numbers less than n, denoted π(n) lies in
the range

n

2 + log n
< π(n) <

n

−4 + log n
.

Thus a random number chosen between 1 and 2128 is prime with probability at least 1/100 (and
is larger if one makes sure not to pick a number that is even, or has small prime divisors). The
question is how to efficiently check whether a given number is prime.

2 Brief Chronology of Primality Testing
• 200 BC: Eratosthenes of Cyrene (Greek mathematician, poet, astronomer, etc.) described the

prime number sieve for finding all the prime numbers up to a certain value. (He also calculated
the circumference of the earth...)

• 1976: At roughly the same time, Miller [5] and Rabin [6] came up with the randomized algo-
rithm that we will describe below. Rabin explicitly formulated it as a randomized algorithm
(which is frequently used in practice today). Rabin’s algorithm is always correct when the
input is a prime, and has a (small) probability of error when the input is a composite. Miller
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described essentially the same algorithm in a deterministic fashion, and proved that if the Ex-
tended Riemann Hypothesis (ERH) holds, then the algorithm will have runtime bounded by
polylog n, where n is the number one is trying to test for primality.

• 1977: Solovay and Strassen [8] described an alternate randomized algorithm, with similar
properties to the Rabin/Miller algorithm, which is also employed today.

• 1987: Adleman and Huang [1] described an efficient randomized algorithm that is always cor-
rect on composite inputs, and has a small probability of error when the input is prime. When
combined with either of the above algorithms, this yields a Las Vegas style algorithm for pri-
mality testing, which always outputs the correct answer, and has expected runtime polynomial
in the length of the input.

• 1999: Agrawal and Biswas [2] gave a new type of randomized primality test, based on the fact
that, as polynomials, for all integers a, (x− a)n ≡ xn − a mod n, if, and only if n is prime.

• 2002: Agrawal, Kayal, and Saxena [3] described a polynomial time deterministic algorithm
for primality testing, which proceeds by essentially de-randomizing the algorithm proposed in
1999.

3 Algebra Refresher
We provide a brief review of the key definitions and facts from algebra upon which the primality
testing algorithms are based.

Definition 1. A group is a set S together with a binary operation “*” that maps an (ordered) pair
of elements of S to a third element of S, and satisfies four conditions:

• closure: for all a, b ∈ S, a ∗ b ∈ S.

• associativity: for all a, b, c ∈ S, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

• identity: there exists an element e such that for all a ∈ S, a ∗ e = e ∗ a = a.

• inverse: for every a ∈ S, there exists an element b s.t. a ∗ b = b ∗ a = e, where e is the identity
element.

Definition 2. For an integer n, the group Z+
n is defined to be the group consisting of the integers

0, 1, . . . , n− 1, with the group operation being addition, modulo n.

Definition 3. For an integer n, the group Z∗
n is defined to be the group consisting of all positive

integers a < n satisfying gcd(a, n) = 1, with the group operation being multiplication, modulo n.

In the above definition, it should be clear why we need the restriction that gcd(a, n) = 1: for
example, if n = 6, the numbers 2 and 3 do not have any (multiplicative) inverse element modulo 6.

Fact 4 (Lagrange’s Theorem). For any group G, and any subgroup H ⊂ G, |H| divides |G|.

A relevant and trivial corollary of the above fact (which we will rely on) is that if H ̸= G, then
|H| ≤ |G|/2.
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Definition 5. A group is called cyclic if there exists an element x such that the set {x, x2, x3, x4, ...}
is equal to the entire group, and such an x is called a generator of the group.

Z+
n is cyclic, as the number 1 generates the group. A bit of group theory lets one show the

following fact:

Fact 6. For n prime, Z∗
n is cyclic. And, more generally, every subgroup of the multiplicative group

of any field will be cyclic.

The above fact, together with the observation that for n prime, |Z∗
n| = n− 1 yields the following

useful theorem, due to Fermat:

Fact 7 (Fermat’s Little Theorem). If n is prime, then for all x ∈ Z∗
n,

xn−1 ≡ 1 mod n.

Fermat’s Little Theorem is not an if, and only if statement. There exist composite numbers—
known as Carmichael numbers—such that for all x ∈ Z∗

n, x
n−1 ≡ 1 mod n. The smallest Carmichael

number is 561 = 3 ∗ 11 ∗ 17. Although Carmichael numbers are relatively rare–it was (relatively)
recently shown that there are an infinite number of such numbers; in fact, there are at least n2/7

Carmichael numbers less than any given number n. [4]. [Although Erdos conjectured that there
are an infinite number of Carmichael numbers, this was only rigorously proved in 1994, and their
asymptotic density is still not well understood.]

In contrast to the above, the following polynomial version of Fermat’s Little Theorem is a char-
acterization of primes (which we may see how to turn into a randomized primality test in the next
homework):

Fact 8 (Fermat’s Little Theorem for Polynomials). n is prime if, and only if, for all a ∈ Z∗
n, the

following polynomial equation holds: (x− a)n ≡ xn − a mod n.

4 Algorithms for Checking Primality
The simplest algorithm for checking the primality of an integer n is to simply check each integer
1, 2, . . . ,

√
n to see if it divides n. While there are slightly more clever variants of this type of

search (for example, only checking the prime factors), they all have the property that their runtime
is super-polynomial in the length of the representation of n, which is prohibitive in practice even
when searching for modest-sized primes.

4.1 Fermat’s Test
Fermat’s Little Theorem (Fact 7) motivates the following very simple primality test, known as Fer-
mat’s Test

Algorithm 9. FERMAT’S TEST
Given n:

• Choose x ∈ {1, . . . , n− 1} uniformly at random.

• If xn−1 = 1 mod n output prime else output composite.

3



The runtime of the algorithm is dominated by the computation of xn−1 mod n, which can be
done by repeated squaring, involving at most O(log n) multiplications of O(log n)-bit numbers.

If n is prime, then Fermat’s Little Theorem guarantees that the above algorithm will correctly
output that n is prime. If n is a Carmichael number, then the above algorithm will obviously fail,
and will falsely say that n is a prime if we choose an x that is relatively prime to n. Nevertheless, the
following proposition shows that Carmichael numbers are the only bad inputs for this algorithm, in
that for any other composite input, the algorithm will correctly output “composite” with probability
at least 1/2 (which can be boosted to 1− 1/2d be repeating the algorithm d times).

Proposition 10. For any n that is a composite, but is not a Carmichael number, the probability that
the above algorithm outputs “composite” is at least 1/2.

Proof. First note that if the x chosen by the algorithm satisfies gcd(n, x) ̸= 1, then xn−1 ̸= 1 mod n
(why?) and the algorithm is successful. We now argue that even if gcd(n, x) = 1, the probability
that the algorithm correctly deduces that n is composite is at least 1/2.

We begin by defining the subgroup H := {x : x ∈ Z∗
n and xn−1 = 1 mod n}. [It is easy to

check that H is, in fact a group.] Assuming that n is composite, but not a Carmichael number, it
follows that there exists some a ∈ Z∗

n such that an−1 ̸= 1 mod n, hence a ̸∈ H , and thus H ̸= Z∗
n

is a proper subgroup. By Lagrange’s Theorem (Fact 4), it follows that |H| ≤ 1
2
|Z∗

n|, and hence with
probability at least 1/2 the randomly chosen x will be a witness to the compositeness of n.

Because Carmichael numbers are far less common than primes, the above algorithm is a rea-
sonable approach to quickly finding primes, and is commonly used. The main drawback is that it
fails for Carmichael numbers, and hence is not suitable for applications in which there is a severe
penalty for returning a composite number (e.g. when cryptographic properties are lost because of
the compositeness of one’s secret keys).

Note: At this point we are done with the material required for before Class 3. The following
notes (Section 4.2 and afterwards) are for the stuff we will talk about during Class 3. It’s okay
to come to class without having read it, and in fact we will try to derive it ourselves during
class. The notes are here for reference after class.

4.2 The Rabin/Miller Algorithm
The Rabin/Miller Algorithm relies on the following Corollary to the fact that Z∗

n is cyclic for prime
n:

Corollary 11. For prime n, if a ∈ Z∗
n with a2 = 1, then either a = 1 or a = −1.

Proof. For n = 2, the claim trivially holds. Otherwise, note that n − 1 must be even. Let g be
a generator of Z∗

n, hence g1, g2, . . . , gn−1 are all distinct, with gn−1 = 1, and for any j > n − 1,
gj = gj mod n−1. Hence if a2 = (gj)2 = 1, it must hold that 2j ≡ 0 mod n− 1, and hence the only
two roots of 1 are gn−1 and g(n−1)/2. (And hence these two roots must be ±1.)

As we will show, if n is an odd composite number that is not a power of a prime, then 1 has
more than 2 square roots in Z∗

n. The Rabin/Miller algorithm is a clever way of searching for such
nontrivial square roots of 1.
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Algorithm 12. RABIN/MILLER PRIMALITY TEST
Given n:

• If n is even, or is a power of a prime, then output composite.
[Exercise: How does one check this efficiently?]

• Otherwise, find k,m s.t. n− 1 = 2km for some odd number m.

• Choose x ∈ {1, . . . , n − 1} uniformly at random, and compute the list of k

numbers (xm, x2m, x22m, . . . , x2km mod n).

• If x2km ̸≡ 1 mod n, then n fails Fermat’s Test, so output composite.

• Check whether any of the k numbers in the list is a non-trivial
square-root of unity. Specifically, for i = 0, 1, . . . , k − 1, check whether(
x2im

)2

= 1, but x2im ̸= ±1. If any such non-trivial root of 1 was

found, output composite, else output prime.

Theorem 2. If n is prime, the Rabin/Miller test will always output “prime”, and if n is composite,
it will output “composite” with probability at least 1/2. Additionally, the runtime is polynomial in
log n [the representation size of the number n].

We leave the analysis of the runtime as an exercise, and focus on proving that the algorithm
succeeds with the claimed probability. In the case that n is prime, Corollary 11 guarantees that
the algorithm will always output “prime”. We now show that if n is composite, and is not of the
form n = pr for some prime p, then with probability at least 1/2 over the choice of random x ∈
{1, . . . , n− 1}, the algorithm will find a nontrivial square root of 1 (a witness to the compositeness
of n) and hence will output “composite”.

At a high level, the proof will follow by carefully constructing a proper subgroup S ⊂ Z∗
n,

and then arguing that if the algorithm fails, it must have been the case that the randomly selected
element x was actually in the set S. Since S is a proper subgroup, however, |S| ≤ |Z∗

n|, and hence
Pr[x ∈ S] ≤ 1/2, implying the theorem.

We now begin to define the construction of the special proper subgroup S.

Definition 13. For an integer r, define Sr = {x ∈ Z∗
n : xr = ±1 mod n}.

It is not hard to show that for any r, Sr is closed under multiplication and if x ∈ Sr then the
inverse of x will also be in Sr, and hence it is a subgroup of Z∗

n. The following lemma gives a
condition for Sr being a proper subgroup.

Lemma 14. Assume n is composite and not a power of a prime. Given an integer r, if there is
some x ∈ Z∗

n for which xr = −1 mod n, then Sr is a proper subgroup of Z∗
n, and by Lagrange’s

Theorem has size |Sr| ≤ 1
2
|Z∗

n|.

Proof. Since n is composite and not a power of a prime, we can express it as n = s · t for integers
s, t with gcd(s, t) = 1. Fix an x s.t. xr = −1 mod n. By the Chinese Remainder theorem, there
exists a y s.t.

y = x mod s, and y = 1 mod t.

We now argue that y ∈ Z∗
n but y ̸∈ Sr. To show the first inclusion, since x ∈ Z∗

n, it must be that
gcd(x, n) = 1. This implies that gcd(x, s) = 1, since s|n. Then this implies that gcd(y, s) = 1,
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since y = x mod s. By definition, gcd(y, t) = 1, so then gcd(y, s) = gcd(y, t) = 1. This implies
that gcd(y, s · t) = 1. Since n = s · t, this implies that y ∈ Z∗

n.
To argue that y ̸∈ Sr, consider yr mod n. We have that yr = 1r = 1 mod t, and yr = xr = −1

mod s. There are two cases: either yr = 1 mod n or else yr = −1 mod n. If yr = −1 mod n,
then yr would be equivalent to −1 modulo both s and t, since n = s · t. But this contradicts the fact
that yr = 1 mod t. Similarly, if yr = 1 mod n, then yr = 1 mod s which contradicts the fact
that yr = −1 mod s. Either way we have a contradiction and we conclude that yr ̸= ±1 mod n,
and hence y ̸∈ Sr, as desired.

We now complete our proof of Theorem 2. The high level idea is that we will cleverly choose an
r for which the conditions of the above lemma are satisfied (namely, there is some c ∈ Z∗

n for which
cr = −1 mod n), and hence by the above lemma the corresponding set Sr satisfies |Sr| ≤ |Z∗

n|
2

.
We will then argue that in order for the algorithm to falsely output “prime”, it must be the case that
the x that is randomly chosen in the algorithm is actually an element of Sr. Since the above lemma
guarantees that |Sr| < n−1

2
, the probability that a “bad” x is chosen is at most 1/2.

Proof of Theorem 2. We now prove that if n is composite, and not a power of a prime, then with
probability at least 1/2 the algorithm will correctly output “composite”. Define b to be the largest
integer less than k (where, as above n− 1 = 2km) such that there exists a y ∈ Z∗

n with the property
that y2bm = −1 mod n. (Hence if n is composite and not a power of a prime, then by Lemma 14
we know |S2bm| ≤ 1

2
|Z∗

n|.) We know that such a b exists, because (−1)2
0m = −1.

We now argue that if the algorithm wrongly outputs “prime”, then x ∈ S2bm. First, suppose that
we chose an x that wasn’t in Z∗

n. But this would imply that x had some common factor d > 1 with
n. Then xn−1 would share the same common factor d with n, and so xn−1 could not be 1 mod n.
So if x ̸∈ Z∗

n, it will fail our test and never output “prime.” Thus, we may assume that x ∈ Z∗
n. In

that case, if the algorithm wrongly outputs “prime,” then the x we chose must satisfy either:

xm = x2m = . . . = x2km = 1 mod n or ∃i s.t. x2im = −1 mod n.

In the first case, trivially, x ∈ S2bm. In the second case, from our definition of b, it follows that b ≥ i,
and hence x2bm = ±1 so x ∈ S2bm. Thus in either of these cases, x ∈ S2bm. By Lemma 14, S2bm is
a proper subgroup of Z∗

n. Hence the probability of choosing an x that fails to find a nontrivial root
of 1 is at least 1/2, as claimed.

5 Fingerprinting
Note: We won’t talk about this during class, but this is a cool application of random primes!

There are a number of important applications of primality testing beyond cryptography. One set
of use-cases is related to “fingerprinting” and pattern matching. One of the canonical examples of
such a use case is in designing a succinct hash of a given string/file, which can be used for making
sure that the file was successfully copied or transferred.

Formally, consider the setting where there is an n-bit file A = (a1, . . . , an), which we have
attempted to copy, resulting in file B = (b1, . . . , bn). The following protocol, defined in terms of a
parameter N which we will pin down later, is one very simple randomized scheme:
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Algorithm 15. FINGERPRINTING
Given n-bit strings A = (a1, . . . , an) and B = (b1, . . . , bn), and integer N:

• Let p be chosen uniformly at random from the set of prime numbers
less than N.

• Regard A and B as n-bit numbers, and check if A ≡ B mod p. If so,
declare ‘‘A = B,’’ otherwise we know that A ̸= B.

Proposition 16. If A = B, then A ≡ B mod p and the algorithm will be correct. We claim that if
A ̸= B, then for any c < n, if we set N = cn log n, the probability that the algorithm is correct is at
least 1− 3/c.

Proof. If A ̸= B, the algorithm is correct unless p divides A−B. Since A,B ≤ 2n, |A−B| ≤ 2n,
and hence it has at most n distinct prime factors. (This is true because for any number, m, the product
of the distinct prime factors is at most m, and each prime factor must be at least 2.) Together with
the fact that the number of primes less than N is at most N/(2 + logN), we have:

Pr[failure] ≤ n

N/(2 + logN)
=

n(2 + log(cn log n)

cn log n

=
n(2 + log c+ log n+ log log n)

cn log n
≤ 1

c
+

log c

c log n
+

2 + log log n

c log n
≤ 3

c
.

Should we be happy with the above theorem? Consider a practical example. Suppose we want to
send a gigabyte video file, and check that the correct file was received, with a probability of falsely
thinking we received the correct file to be one in a million. Namely, n ≈ 230, and we want the
probability that the algorithm fails to be bounded by ≈ 2−20, so c ≈ 3 · 220. The above proposition
says that we should pick N = cn log n ≈ 230 · 3 · 220 · log 230 < 257. This means, after sending our
gigabyte file, all we need to do is send a 57-bit prime, and the 57-bit number that is the file modulo
our prime. Each of these is less than a single 64-bit word!!!! [And if we want the probability of
failure to be less than 2−50, this just means we need an extra 50 bits!.]

5.1 Did we need to use a prime?
What goes wrong if we didn’t use a prime p in this fingerprinting scheme? Namely, if we picked q
uniformly at random between 1 and N , and then just checked whether A = B mod N? The core of
the proof of the success guarantee was the fact that an n-bit number can have at most n distinct prime
factors, which was the numerator in our probability of failure. If we are not restricting ourselves to
primes, then this numerator would become the number of factors of our n-bit number. How much
worse could this be? Quite a lot. Consider the following back-of-the-envelope calculation: imagine
that A − B is the product of the first k prime numbers. The first k prime numbers are all at most
O(k log k), and hence their product is at most (k log k)k ≈ 2k log k, so we can think that n ≈ k log k.
How many factors does A−B have? Well, any subset of these k prime factors can be multiplied to
produce a distinct factor of A − B, hence there are 2k such factors (since each of the k primes has
2 choices, either it is in the factor, or not). Since n ≈ k log k, as opposed to the bound of n distinct
prime factors, we would now have 2k ≈ 2n/ logn distinct factors—nearly exponentially worse than
before!!!
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