A practice exam starts on the next page. We've done our best to draw this exam independently from the same distribution ${ }^{1}$ as the real exam. Inspired by this, here is a warm-up question about how best to use this practice exam.
(Note: this is not a serious question :))
0. (0 pt.) Suppose that a class covers n topics. Each student i in the class has studied up on a set $S(i) \subseteq\{1, \ldots, n\}$ of topics. To create the exam, the instructors choose k topics to test, independently and uniformly at random (with replacement) among the n topics, and give $100 / k$ points to each. Suppose that n and k are sufficiently large ${ }^{2}$, and that $k=o(n)$.
(a) What is the expected score of student i, in terms of $|S(i)|$? (Assuming that student i aces any problem on a topic they have studied).
(b) Suppose that a student wants to use the practice exam to assess if they have studied enough. That is, the student studies first, and then scores s on the practice exam taken under the same conditions as the actual final. Bound the probability that they score worse than $s-1$ (out of 100) on the actual final, asymptotically in terms of k and/or n.
(c) Suppose on the other hand that a student wants to use the practice exam to help guide their study. That is, they student studies the topics that appear on the practice exam as they take it. Say the student scores s on the practice exam taken in this open-book way. What can you say about how well the student will score on the actual final?
(d) How many topics should a student study up on to maximize their expected score on the final exam?

SOLUTION:

(b) For both the real and the practice exam,

$$
\begin{aligned}
& \mathbb{P}\left[\mid \text { score } e_{i}-\mu_{i} \mid>t\right] \leq 2 \exp \left(-t^{2} / 2 \sum_{j=1}^{k}\left(\frac{100}{k}\right)^{2}\right)=2 \exp \left(-\frac{t^{2} k}{20000}\right) \\
& \left.\Gamma_{\text {Hueffing }}\right) \\
& \text { If we choose } t=1 / 2 \text { and } k \text { is sufficiently large, then whip } \mid \text { pracicesconere }- \text { realscore } \mid \leqslant 1 / 2+1 / 2=1 .
\end{aligned}
$$

(c) You cant say much, since the exams are independent. The set of topics could be totally disjoint!
(d) All of them!

[^0]
Instructions

- DO NOT OPEN THE EXAM UNTIL YOU ARE INSTRUCTED TO. (Note: since this is a practice exam, go ahead when you feel ready!)
- Answer all of the questions as well as you can. You have three hours to complete this exam.
- The exam is non-collaborative; you must complete it on your own. If you have any clarification questions, please ask the course staff (we are outside the exam room). We cannot provide any hints or help.
- This exam is closed-book, except for:
- Up to three double-sided sheets of paper that you have prepared ahead of time. You can have anything you want written on these sheets of paper.
- We have also provided a "cheat-sheet" with some helpful theorems and inequalities. You can find this as the last page of this exam. Feel free to rip it off of the exam.
- Please DO NOT separate pages of your exam (except for the cheat sheet at the back). The course staff is not responsible for finding lost pages, and you may not get credit for a problem if it goes missing.
- There are a few pages of extra paper at the back of the exam in case you run out of room on any problem. If you use them, please clearly indicate on the relevant problem page that you have used them, and please clearly label any work on the extra pages.

General Advice

- If you get stuck on a question or a part, move on and come back to it later. The questions on this exam have a wide range of difficulty, and you can do well on the exam even if you don't get a few questions.
- Pay attention to the point values. Don't spend too much time on questions that are not worth a lot of points.
- There are 100 points total on this exam.

Name (please print clearly):

Honor Code

The following is a statement of the Stanford University Honor Code:

1. The Honor Code is an undertaking of the students, individually and collectively:
(1) that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class work, in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;
(2) that they will do their share and take an active part in seeing to it that others as well as themselves uphold the spirit and letter of the Honor Code.
2. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.
3. While the faculty alone has the right and obligation to set academic requirements, the students and faculty will work together to establish optimal conditions for honorable academic work.

For my part, I believe that we have upheld our end of the agreement in Item 2. I don't think we are taking unusual or unreasonable precautions that would indicate a lack of confidence in the honor of students, and I believe that the in-person setting avoids temptations ot violate the honor code to the extent practicable.
[signed, Mary Wootters]
Please acknowledge that you have held up your end of the agreement in Item 1:
I have abided by the Honor Code, and in particular the policies listed above, both in letter and in spirit, while taking this exam.
signed,

Good Luck!

Note: (b) and (c) on this question could take a long lime if you write out all the details. On a real timed exam we would not ask you to do that.

1. (26 pt.)

(a) (7 pt.) Let $\varepsilon \in(0,1 / 2)$. Suppose you have an algorithm A that outputs answers in $\{0,1\}$ and is correct with probability $\frac{1}{2}+\varepsilon$. You decide to make a more robust algorithm, \tilde{A}, that just runs A independently T times and returns the most frequent answer. Show that \tilde{A} is correct with probability 0.99 for some value T that is $O\left(1 / \varepsilon^{2}\right)$.

Let $X_{i}=\mathbb{1}\left\{i^{\text {th }}\right.$ nun of A is correct $\}$.
By Chebyshev's inequality, $\mathbb{P}\left[\left|\sum_{i=1}^{T} X_{i}-T\left(\frac{1}{2}+\varepsilon\right)\right|>\varepsilon T\right] \leqslant \frac{T\left(\frac{1}{2}+\varepsilon\right)\left(\frac{1}{2}-\varepsilon\right)}{\varepsilon^{2} T^{2}}$
Thus, if $T \geqslant \frac{25}{\varepsilon^{2}}$, this probability is ≤ 0.01, and $\leq \frac{1}{4 \varepsilon^{2} T}$.
a majority of the trials are correct. [Note: you could also use a Chemoff bed here].
(b) ($\mathbf{7} \mathbf{p t .)}$) Now suppose that A can output answers in $\{0,1, \ldots, n\}$, instead of just $\{0,1\}$. Suppose that A is correct with probability at least $p \geq \frac{C \log n}{n \log \log n}$, where C is some constant that you get to choose. Further suppose that for any incorrect answer $i \in\{0,1, \ldots, n\}$, the probability that A outputs i is at most $1 / n$. 그N wat, for sufficiently large n, \tilde{A} (which still returns the most frequent answer oft of the T trials) is correct with probability at least 0.99 when $T=n$.

SKERCH a proof that

First, I'd use a Chemoff bound to show that with probability $\geqslant 1-\mathrm{o}(1)$, at least $p n / 2=\frac{C \log (n)}{2 \log \log (n)}$
of the trials output the correct answer.
Second, for any one incorrect answer, i, the probability that i gets k voles is at most

$$
\binom{n}{k} \cdot\left(\frac{1}{n}\right)^{k} \leqslant \frac{n^{k}}{k!}\left(\frac{1}{n}\right)^{k}=\frac{1}{k!} \leq\left(\frac{e}{k}\right)^{k}
$$

$$
\begin{aligned}
& \text { Cunion bound overall possible } \\
& k \text { trials that could vote for } i
\end{aligned} \text { bound on the probability that all } k \text { of }
$$

$$
\begin{aligned}
& k \text { union bound that could vote for } i \text { bound on the probability } \\
& \text { those vote for } i
\end{aligned}
$$

$$
\text { For any } k \geq \frac{C \log (n)}{2 \log \log n} \text {, this is } \leqslant\left(\frac{e}{k}\right)^{k} \leqslant\left(\frac{2 \log \log (n)}{C \log n}\right)^{\frac{C \log (n)}{2 \log \log n}}=\exp \left[-\frac{C \log (n)}{\log \log (n)}\left[\log \log (n)+\lg \left(\frac{c}{2 \operatorname{lgg} n}\right)\right]\right.
$$

appealed inst
Then we union bound over all $k=\frac{p n}{2}, \ldots, n$
$=\exp (-C \log (n)[1+0(1)])$
and over all n values of i (our incorrect answer) and conclude $\approx(1 / n)^{C}$
$\mathbb{P}\left[\begin{array}{l}\text { angincorrect } \\ \text { answer gets }\end{array}>\frac{p n}{2}\right.$ voles $] \leqslant n^{2} \cdot\left(\frac{1}{n}\right)^{C}$,
that.
[More parts on next page]

So if we choose $C \geq 3$ this is [easily] o(1).
Then we union bound over the "First" and "Second" paragraphs to conclucle that with prob. 1-o(1), the right answer gets $\geqslant \frac{n p}{2}$ votes, while all the incorrect answer get $<\frac{n p}{2}$ votes.
[Continued from previous page]
(c) (7 pt.$)$ Sketch a proof that shows that, in the previous part, you cannot take p to be substantially smaller. That is, explain/ why there are some constants $C^{\prime}, n_{0}>0$ so that, for any $n \geq n_{0}$, if $p \leq \frac{\log n}{C^{\prime} n \log \log \eta}$ then when $T=n, \tilde{A}$ could be incorrect with
 probability at least $1 / 2$.
Note: you don't need to give a super formal proof, but explain the steps you would go through to give a formal proof. (That is, what theorems/inequalities would you use, on what random variables, and how would they fit together to prove this result?)
setting, there will be in offs setting as well. Then the \#voles for incorrect answer i is a Poisson random
variable, $X_{i} \backsim P_{o i}(2)$, and the X_{i} are independent. At this point we can use the def. of Poisson random
vars to show that $\mathbb{P}\left[x_{i} \geqslant 2 p n\right] \geq \mathbb{P}\left[X_{i}=2 p n\right]=\frac{e^{-2} 2^{2 p n}}{(2 p n)!} \geqslant \frac{1}{e^{2}} \cdot 2^{2 p n}\left(\frac{1}{2 p n}\right)^{2 p n}=\exp (2-2 p n \cdot \log (p n))$
For large enough C^{\prime} ', this is, say, $\geq 1 / \sqrt{n}$.
By independence of the $X_{i} ' s, \quad \mathbb{P}\left[\exists_{i}, X_{i} \geq 2 p n\right] \geq 1-(1-1 / \sqrt{n})^{n} \approx 1-\exp (-\sqrt{n}) \geq 1 / 2$, as desired.
$=\exp \left(2-2 \frac{\log n}{C^{\prime} \log g(n)} \cdot O(\lg \lg n)\right)$
$=\exp \left(2-\frac{2 c^{\prime \prime} \log (n)}{c^{\prime}}\right)$ for
(d) [May be more difficult] (5 pt.) As above, say that A outputs answers in $\{0,1, \ldots, n\}$. Now suppose that A is correct with probability $1 / 4$, and can output any particular incorrect answer i with probability at most $1 / 8$. How small can you take T to still allow the guarantee that \tilde{A} is correct with probability at least 0.99 ?

T could be as small as $O(1)$.
Say WLOG that the "correct" ansever is O. By a chemuff bound, $\mathbb{P}[\#$ voles for $0<T / 5] \leqslant \exp \left(\frac{-\left(\frac{1}{4}-1 / 5\right)^{2} T / 4}{3}\right)=\exp (-T / C)$ for some constant C.
Break up the incorrect answers $1, \ldots, n$ into chunks $S_{1}, \ldots, S_{r} \subseteq\{1, \ldots, n\}\left(S_{i} \cap S_{j}=\varnothing\right)$ so that $\forall_{i}, \sum_{i \in S_{j}} \mathbb{P}[$ A outputs $i] \in[1 / 16,3 / 16]$. We can do this via the greedy algorithm: keep taking values i into S_{j} until the first time $\sum_{i \in S_{j}} \mathbb{P}[$ Ascus $i]>1 / 16$. Since each of these probabilities is $\leqslant 1 / 8$, well have $\sum_{i \in S_{j} ;} \mathbb{P}[A$ says $i] \leqslant 1 / 16 \times 1 / 8=3 / 16$. Note that $r \leq 16$, or else $\sum_{i=1}^{n} \mathbb{P}[A$ outputs $i]>1$. Fix some chunk $S=S_{j}$. By a chenolf bound, (say, Benstein'sineg.)

$$
\mathbb{P}[\underbrace{\text { \#votes for any } i \in S}_{\text {this is the sum of } T \text { index. r.v.'s, }} \geqslant\left(\frac{3}{16}+\frac{1}{32}\right)_{5}^{T}] \leqslant \exp \left(\frac{-(T / 32)^{2}}{T}\right)=\exp \left(-T / 32^{2}\right) \text {. (**) }
$$

and \mathbb{E} is $\leqslant 3 / 16 \cdot T$
If we choose T to be a big enough constant, both $(*)$ and $(* *)$ are $\leqslant \frac{0.01}{17}$, and then by a union bound over
(*) and all $r \leqslant 16$ instantiations of $(* *)$ we see that there are more voles for O than cnn y other answer w/ prob ≥ 0.99.
2. ($\mathbf{2 4} \mathbf{~ p t .) ~ F o r ~ e a c h ~ o f ~ t h e ~ f o l l o w i n g ~ t a s k s , ~ b r i e f l y ~ s k e t c h ~ a ~ r a n d o m i z e d ~ a l g o r i t h m ~ t h a t ~ d o e s ~ i t ~}$ and briefly explain why it works. You do not need to give a formal proof that it works. You can use any algorithm we have seen in class as a black box (unless otherwise noted), and your answer should be no more than a few sentences and possibly some very short pseudocode for each part.
(a) (6 pt.) Given a connected, undirected, unweighted graph G on n vertices and m edges, find a cut (S, \bar{S}) so that the number of edges crossing the cut is minimized, with probability at least 0.9. The algorithm should run in time poly (n).

Use Kerger's algorithm.
(b) (6 pt.) Given a data set $X \subseteq \mathbb{R}^{N}$ of size N with $\|x\|_{2}=1$ for all $x \in X$, give a randomized algorithm that returns estimates of $\|x-y\|_{2}$ for all pairs $x, y \in X$. With probability at least 0.99 , your estimates should all be accurate up to a multiplicative factor of (1 ± 0.01). Your algorithm should run in time $O\left(N^{2} \log N\right)$.
Rerun these as estimates.
[More parts on next page]

$$
\begin{aligned}
& \text { Let } A \in \mathbb{R}^{m \times N} \text { be a matrix of sid Gcuussicns for } m=O(\log N) \text {, as guanatelly } J \text { J lemma }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For all } x \in X \text {, compute } A \cdot x \text { I tatestime } O(N \cdot \underbrace{N \log N})=O\left(N^{2} \log N\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { For all } x, y \in X \text {, compute }\|A x-A y\|_{2} / / \text { one } O\left(N^{2}, \log N\right)
\end{aligned}
$$

[Continued from previous page]
(c) ($\mathbf{6} \mathbf{p t}$.) Say you are given a 2- CNF formula φ (that is, φ is of the form $\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge$ \cdots, with n variables and m clauses that each contain two distinct literals). Describe a randomized algorithm that runs in time poly (n, m) and, if there is a satisfying assignment to φ, returns it with probability at least 0.99 . If there is no satisfying assignment, your algorithm should return "NOPE" with probability 1.
Note: Please describe your algorithm, don't use an algorithm from class as a black box.
This is the 2SAT problem, and we saw an algorithm to solve it in class:
Start w/ a random ossignmento For $t=1, \ldots, 100 n^{2}$:

- If there is some clause involving x_{i}, x_{j} that is not satisfied, choose $r \in\{i, j\}$ unifumly
at random and flip x_{n} in σ
- Else retum σ

Rectum NOPE
(d) (6 pt.) Let (X, d) be an arbitrary finite metric space with $|X|=n$. We say that k points $x_{1}, \ldots, x_{k} \in X$ form an r-cluster if $d\left(x_{i}, x_{j}\right) \leq r$ for all $i, j \in\{1, \ldots, k\}$. For a general metric space (X, d), the problem of finding an r-cluster of size k, given k and r, seems pretty hard; but fortunately you have access to a magic genie who can do it for (\mathbb{R}^{d}, ℓ_{1}) in time polynomial in n and in $2^{\sqrt{d}}$. (If there is no r-cluster of size k, the genie outputs "Sorry, no such cluster.")
Give a randomized algorithm that runs in time poly (n), takes as input k and r, and satisfies the following guarantee with probability at least 0.99 , for some $D=O(\log n)$: If there is r / D-cluster in X of size k, the algorithm must output an r-cluster in X of size k. (Otherwise it can do whatever it wants).

Use Bourgain's embedding to embed X into $\left(\mathbb{R}^{O\left(\log ^{2} n\right)}, l_{1}\right)$ with distortion $O(\log (n))$.
Then use the genie to find clusters in the embedding, and retum those.
3. ($15 \mathrm{pt}$.) Let G be a cycle with n vertices. (That is, the vertices are labeled $0,1, \ldots,{ }^{16} n-1$, and each vertex i is connected only to $i \pm 1 \bmod n)$. The vertices are each colored one of n colors, with ${ }^{1} /($ occurrences of each color. Show that it is always possible to find n vertices in G so that all are distinct colors, and no two are connected by an edge.

Weill use the LLL!
For each color $i \in[n]$, choose a random vertex v_{i} of color i.
For each edge $e \in E(G)$, Let A_{e} be the bad event that both endpoint of e were selected. Then $\mathbb{T}\left[A_{e}\right]= \begin{cases}0 & \text { endpts of } e \text { had the same color } \leqslant 1 / 16^{2} \\ (1 / 6)^{2} & \text { otherwise }\end{cases}$

Further, A_{e} is mutually independent of $A_{e^{\prime}}$ for all e^{\prime} whose end points don't share a color with either endpoint of e.
The number of edges w/endpts that DO share a color with cither endpt of e is at most 62 . That's because for each of the $\leqslant 2$ colors, thereare 16 vertices of that color, and each of them have ≤ 2 edges touching them. That's 64 edges, but we've counted e itself twice so we con subtract 2 to get 62. Thus, we can take $d=62$.

Now, we have

$$
p \cdot d=\frac{62}{16^{2}}<\frac{64}{16^{2}}=\frac{4}{16}=\frac{1}{4} .
$$

So we can apply the LLL and conclucle that there's a way to choose vertices so that none of the A_{e} occur.
4. (15 pt.) Consider the following procedure for shuffling a deck of n cards: Choose two indices $i, j \in\{1, \ldots, n\}$ uniformly and independently at random, and switch the card at position i and the card at position j. (Note that it is possible that $i=j$).

In this problem, we will use a coupling argument to bound the mixing time $\tau_{m i x}$ of this procedure. Let X_{t} denote the state of the deck after we have swapped t cards.
(a) (5 pt.) Your friend suggests the following coupling (which we also encountered on a quiz). Let X_{t} be the walk described above, and define Y_{t} to be a walk that makes the same choice of i and j at each step. Unfortunately, this isn't a great idea for bounding $\tau_{m i x}$. In at most a few sentences, explain why not.

$$
\text { This walk will never couple, anless } X_{0}=Y_{0} \text {. }
$$

(b) (10 pt.) Here's another coupling to consider. We will view our shuffling procedure slightly differently: Instead of choosing i, j at random, choose a card c (like "the ace of spades") uniformly at random, and choose an index $i \in\{1, \ldots, n\}$ uniformly at random. Then switch the card c with whatever card at index i. Note that this is an alternative way of defining the same Markov chain $\left\{X_{t}\right\}$. Now define a coupling (X_{t}, Y_{t}) by choosing the same choice of c and i in both chains.
Use this coupling to show that $\tau_{\text {mix }}=O\left(n^{2}\right)$.
[HINT: Keep track of a variable D_{t} which is defined to be the number of positions in which the decks X_{t} and Y_{t} differ. Show that $\operatorname{Pr}\left[D_{t+1}<D_{t}\right] \geq\left(D_{t} / n\right)^{2}$.]
Let D_{t} be as in the hint.
Consider the following cases:
CASE 1. Card c is already in the same place in decks 1 and $2 . \longleftarrow$ Probability $1-\frac{D_{t}}{n}$, because In this case, $D_{t+1}=D_{t}$. we had to pick c bo be one of the $n-D_{t}$ cards where the 2

cause $2 a$ The card at location i is the same in both decks $\leftarrow P^{P r o b} \frac{D_{t}}{n} \cdot\left(1-\frac{D_{t}}{n}\right)$
In this case, $D_{t+1}=D_{t} \quad$ (we aligned the " c " s, but messed up what was @ index i)
Case Rb The card at location i is different between the 2 decks. \longleftarrow Prob. $\frac{D_{t}}{n} \cdot \frac{D_{t}}{n}$
In this case, $D_{t+1}=D_{t}-1$ (we aligned the " c "s, [More space on next page]
[Continued from previous page; more space for part (b)]
By the analysis above,

$$
\mathbb{P}\left[D_{t+1}=D_{t}-1\right]=\left(\frac{D_{t}}{n}\right)^{2} \text {, and } \mathbb{P}\left[D_{t+1}=D_{t}\right]=1-\left(\frac{D_{t}}{n}\right)^{2}
$$

Thus, the expected amount of time Δ to go from $D_{t}=i$ to $D_{t+\Delta}=i-1$ is $\left(\frac{n}{i}\right)^{2}$.
Let T be the time needed to go from $D_{0} \leq n$ o $D_{T}=0$. By linearity of \mathbb{E},

$$
\begin{aligned}
& \mathbb{E} T=\left(\frac{n}{n}\right)^{2}+\left(\frac{n}{n-1}\right)^{2}+(\\
& \text { Then by Markov's inequality, }
\end{aligned}
$$

$$
\mathbb{T}[T>2 e(E T)] \leqslant 1 / 2 e
$$

Then $\Delta(2 e \cdot \mathbb{E}[T]) \leqslant \mathbb{P}[T>2 e \mathbb{E} T] \leqslant 1 / 2 e$,
So $\tau_{\text {mix }} \leqslant 2 e \cdot \mathbb{E}[T]=O\left(n^{2}\right)$, as desired.
(c) ($\mathbf{0} \mathbf{p t}$.$) BONUS [We wouldn't put this on a real exam, but it might be fun to think$ about :)]. Show that $\tau_{\text {mix }}=O(n \log n)$. references therein.
5. (20 pt.) Let $s_{1}, s_{2} \in\{0,1\}^{n}$ denote two independent and uniformly random length n Boolean strings.
A subsequence of a string $s \in\{0,1\}^{n}$ is any sequence of the form $s\left[i_{1}\right] s\left[i_{2}\right] \cdots s\left[i_{\ell}\right]$ for $i_{1}<$ $i_{2}<\cdots<i_{\ell}$. For example, 000 is a subsequence of 010101. A common subsequence between strings s_{1} and s_{2} is a subsequence that's common to both. For example, $s_{1}=010101$ and $s_{2}=001100$ have a common subsequence 000 . They also have a longer common subsequence, 0011. The longest common subsequence is a common subsequence with the most bits in it: in this example, one happens to be 0011.
(a) ($\mathbf{1 0} \mathbf{~ p t .) ~ L e t t i n g ~} L$ denote the length of the longest common subsequence of the two strings, prove that $\operatorname{Pr}[|L-\mathbb{E}[L]| \geq \lambda] \leq 2 e^{-\frac{\lambda^{2}}{2 n}}$.
Well use Azuma-Hoeffling. Let $Z_{t}=\mathbb{E}\left[L \mid X_{0}, \ldots, X_{t}\right]$ where $X_{t} \in\{0,1\}^{2}$ is the be the Doob martingale. Then $\quad X_{t}=\left(s_{1}[t], s_{2}[t]\right)$. $\left|z_{t}-Z_{t-1}\right| \leqslant 1$, because one additional bit can change the length of the $L C S$ by $\leqslant 1$. So by Azuma,

$$
\begin{gathered}
\mathbb{P}\left[\left|Z_{n}-Z_{0}\right| \geqslant \lambda\right] \leqslant 2 \exp \left(\frac{-\lambda^{2}}{2 n}\right) . \\
\prod_{\text {this is }} \mid E[L] \\
\text { this is } L
\end{gathered}
$$

(b) (5 pt.) Prove that for sufficiently large n, with probability tending to 1 as $n \rightarrow \infty$, the length of the longest common subsequence of the two strings is at least $0.49 n$.
Wewill show that w/ prob 1-0(1), both strings have at least 0.49 n zeros. Indeed, let $X_{i}=1$ ff $S_{1}[i]=0$, so the X_{i} are iid $\operatorname{Ber}(1 / 2)$.
Then by a Chemoff bound,

$$
\begin{aligned}
P\left[\sum_{i} x_{i}<0.49 n\right] & \leq \exp \left(\frac{-(0.01)^{2} \cdot 0.49 n}{3}\right) \\
& =\exp (-\Omega(n))
\end{aligned}
$$

The same holds for S_{2}.
By a union bound, whip both s_{1} and s_{2}
[Another part on next page] have $\geqslant 0.49_{n}$ zeros, so the LCS is at least that long. (Indeed, $\underbrace{000 \cdots .}$ is a common subsequence).

Note: Pinning down IE [L] exactly is open! See "Improved Bounds on the arg length of CSs"
[Continued from previous page] [Licker 2009] and the references therein for an overview of (c) (5 pt.) [May be more difficult] Find a constant $c>1 / 2$ and prove $\mathbb{E}[L] \geq c n$.

There are lots of ways to do this. One way is 10 observe that for $n=2$, $\mathbb{E}[L]>\frac{1}{2} n$, and then break up our string into chunks of size 2 and stitch together the LCS's from each chunk. To see that this holds for $n=2$, we con just count:

ST/
SR

00	2	1	1	0
01	1	2	1	1
10	1	1	2	1
11	0	1	1	2

Thus, $\mathbb{E}[L]=\frac{4 \cdot 2+10 \cdot 1}{16}=\frac{18}{16}=9 / 8$
So we can takeour constant c to be at least $\frac{9}{2 \cdot 8}=\frac{9}{16}>\frac{1}{2}$.

This is the end of the exam! You can use this page for extra work on any problem. Keep this page attached to the exam packet, and if you want work on it graded, clearly label which question your extra work is for.

This page is for extra work on any problem. Keep this page attached to the exam packet, and if you want work on it graded, clearly label which question your extra work is for.

This page is for extra work on any problem. Keep this page attached to the exam packet, and if you want work on it graded, clearly label which question your extra work is for.

Some useful inequalities, definitions and theorem statements

Note: We have not always stated full theorems here, just the quantitative punchlines. You are responsible for knowing when each theorem applies.

Inequalities and Series

- $1-x \leq e^{-x}$ for any x.
- $(n / k)^{k} \leq\binom{ n}{k} \leq(e n / k)^{k}$ for all $k \leq n$.
- $\binom{n}{k} \leq \frac{n^{k}}{k!}$ for all $k \leq n$.
- $\sum_{i=1}^{n} 1 / i=\Theta(\log n)$
- $\sum_{i=1}^{n} 1 / i^{c}=O(1)$ for all $c>1$.

Definitions

- $f(n)=O(g(n))$ means that there are some constants $c, n_{0}>0$ so that for all $n \geq n_{0}$, $f(n) \leq c g(n)$.
- $f(n)=\Omega(g(n))$ means that there are some constants $c, n_{0}>0$ so that for all $n \geq n_{0}$, $f(n) \geq c g(n)$.
- $f(n)=o(g(n))$ means that $\frac{f(n)}{g(n)} \rightarrow 0$ as $n \rightarrow \infty$.
- $f(n)=\omega(g(n))$ means that $\frac{f(n)}{g(n)} \rightarrow \infty$ as $n \rightarrow \infty$.
- If $X \sim \operatorname{Poi}(\lambda)$, then $\operatorname{Pr}[X=k]=\frac{e^{-\lambda} \lambda^{k}}{k!}$.
- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $\operatorname{Pr}[X=x]=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- If $X \sim \operatorname{Ber}(p)$, then $X \in\{0,1\}$ and $\operatorname{Pr}[X=1]=p$.

Concentration Inequalities

- Markov's inequality: For a non-negative random variable $X, \operatorname{Pr}[X>t] \leq \frac{\mathbb{E} X}{t}$.
- Chebyshev's inequality: For any random variable $X, \operatorname{Pr}[|X-\mathbb{E} X|>t] \leq \frac{\operatorname{Var}(X)}{t^{2}}$.
- A few Chernoff bounds: For independent $X_{i} \in\{0,1\}$, if $X=\sum_{i=1}^{n} X_{i}$, then:
- For $\delta>0, \operatorname{Pr}[X \geq(1+\delta) \mathbb{E}[X]] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathbb{E}[X]}$. If $\delta \in(0,1]$ this is $\leq \exp \left(-\delta^{2} \mathbb{E}[X] / 3\right)$.
- For $\delta \in(0,1], \operatorname{Pr}[X \leq(1-\delta) \mathbb{E}[X]] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mathbb{E}[X]}$. If $\delta \in(0,1]$, this is $\leq \exp \left(-\delta^{2} \mathbb{E}[X] / 2\right)$.
- For $c \geq 6, \operatorname{Pr}[X \geq c \mu] \leq 2^{-c \mu}$.
- Tail bound for Poisson random variables: If $X \sim \operatorname{Poi}(\lambda)$, then for any $c>0, \operatorname{Pr}[|X-\lambda| \geq$ $c] \leq 2 \exp \left(\frac{-c^{2}}{2(c+\lambda)}\right)$.
- Azuma-Hoeffding Inequality: Let $\left\{Z_{t}\right\}$ be a martingale with respect to $\left\{X_{t}\right\}$, and suppose $\left|Z_{i}-Z_{i-1}\right| \leq c_{i}$ for all $i \leq n$. For any $\lambda>0, \operatorname{Pr}\left[\left|Z_{n}-Z_{0}\right| \geq \lambda\right] \leq 2 \exp \left(\frac{-\lambda^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)$.

Dimension Reduction

- Bourgain's Embedding: for any finite metric space (X, d) with $|X|=n$, there is an embedding of (X, d) into \mathbb{R}^{k} under the ℓ_{1} metric with distortion $O(\log n)$, where $k=O\left((\log n)^{2}\right)$.
- Johnson-Lindenstrauss Lemma: for any $\varepsilon \in(0,1)$, for any $X \subseteq \mathbb{R}^{d}$ with $|X|=n$, there is a linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m=O\left(\varepsilon^{-2} \log n\right)$ that embeds $\left(X, \ell_{2}\right)$ into $\left(\mathbb{R}^{m}, \ell_{2}\right)$ with distortion at most $(1+\varepsilon)$.

Probabilistic Method

- Second moment method: for real-valued $X, \operatorname{Pr}[X=0] \leq \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^{2}}$.
- LLL: Let A_{1}, \ldots, A_{n} be events so that $\operatorname{Pr}\left[A_{i}\right] \leq p$ for all i, and where each A_{i} is mutually independent of all but d other events. Then:
- If $p d \leq 1 / 4$, then $\operatorname{Pr}\left[\bigcap_{i} \overline{A_{i}}\right]>0$
- If $p(d+1) \leq 1 / e$, then $\operatorname{Pr}\left[\bigcap_{i} \overline{A_{i}}\right]>0$.

Markov Chain / Martingale Theorems

- Fundamental theorem of Markov chains: Let $\left\{X_{t}\right\}$ be an irreducible aperiodic Markov chain over a finite state space with transition matrix P. Then there is a unique stationary distribution π so that $\operatorname{Pr}\left[X_{t}=i \mid X_{0}=j\right] \rightarrow \pi_{i}$ for all states i, j. Further, π_{i} is the expected return time of state i, and $\pi P=\pi$.
- Let $\left\{X_{t}\right\}$ be a finite irreducible aperiodic Markov chain with a coupling $\left\{\left(X_{t}, Y_{t}\right)\right\}$. Then $\Delta(t) \leq \max _{s, s^{\prime}} \operatorname{Pr}\left[X_{t} \neq Y_{t} \mid X_{0}=s, Y_{0}=s^{\prime}\right]$.
- Let $\left\{X_{t}\right\}$ be a finite irreducible aperiodic Markov chain and let T be a strong stationary stopping time. Then $\Delta(t) \leq \operatorname{Pr}[T>t]$.
- The Doob Martingale for a quantity A is $Z_{t}=\mathbb{E}\left[A \mid X_{0}, \ldots, X_{t}\right]$. Theorem: it is a martingale.
- Martingale stopping theorem: Let $\left\{Z_{t}\right\}$ be a martingale with respct to $\left\{X_{t}\right\}$. Let T be a stopping time for $\left\{X_{t}\right\}$. Then $\mathbb{E}\left[Z_{T}\right]=\mathbb{E}\left[Z_{0}\right]$ if at least one of the following holds:

1. There is a constant c s.t. $\left|Z_{i}\right| \leq c$ for all i.
2. There is a constant c s.t. $T<c$ with probability 1 .
3. $\mathbb{E}[T]<\infty$ and there is a constant c s.t. for all $i, \mathbb{E}\left[\mid Z_{i+1}-Z_{i} \| X_{0}, \ldots, X_{i}\right]<c$.

[^0]: ${ }^{1}$ Okay, to be honest, this practice exam is not as vetted as a real exam would be, and it might involve a bit more reading (ie., the problems take longer to state) than we'd ideally put on a timed exam. So it's not quite the same distribution. But we are shooting for the same distribution of, say, difficulty.
 ${ }^{2}$ It seems reasonable to us that there would be upwards of a million topics on the exam...

