
Problem Set 1 Solution CS265/CME309, Autumn 2023

1. (5 pt.) [Perfect Matchings.]

Let G = (V,E) be a bipartite graph with n vertices on each side. A perfect matching in G is
a list of edges M ⊂ E so that every vertex in V is incident to exactly one edge.

For example, here is a bipartite graph G (on the left), and a perfect matching in G (shown
in bold on the right):

Your goal is to determine if the graph G has a perfect matching.

There are efficient deterministic algorithms for this problem, but in this problem you’ll work
out a simple randomized one.1

(a) (2 pt.) Recall that the determinant of an n× n matrix A is given by

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ai,σ(i),

where the sum is over all permutations σ : {1, . . . , n} → {1, . . . , n}, and where sgn(σ)
denotes the signature2 of the permutation σ. (For example, if n = 3, then the function
σ : {1, 2, 3} → {1, 2, 3} that maps 1 7→ 2, 2 7→ 1, 3 7→ 3 is a permutation in S3. The
signature of σ happens to be −1, although as noted in the footnote, if you haven’t seen
this definition before, don’t worry about it).

Let A be the n× n matrix so that

Aij =

{
xij (i, j) ∈ E

0 otherwise

where the xij are variables, and (i, j) ∈ E if and only if the i-th vertex on the left and
the j-th vertex on the right are connected by an edge in G. Notice that det(A) is a
multivariate polynomial in the variables xij .

Explain why det(A) is not identically zero if and only if G has a perfect matching.

1This randomized algorithm has the advantage that (a) it generalizes to all graphs (not necessarily bipartite), and
(b) it can be parallelized easily. Moreover, it’s possible to generalize it to actually recover the perfect matching (and
not just decide if there is one or not).

2The signature of a permutation is defined as −1 if the permutation can be written as an odd number of trans-
positions, and +1 otherwise. The exact definition isn’t important to this problem, all you need to know is that
it’s either ±1 in a way that depends on σ.
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(b) (3 pt.) Use the part above to develop a randomized algorithm for deciding whether or
not there is a perfect matching. Your algorithm should run in O(n3) operations. If G
has no perfect matching, your algorithm should return “There is no perfect matching”
with probability 1. If G has a perfect matching, your algorithm should return “There is
a perfect matching” with probability at least 0.9.

You should clearly state your algorithm and explain why it has the desired properties.

[HINT: You may use the fact that one can compute the determinant of a matrix A ∈
Rn×n in O(n3) operations. ]

(c) (0 pt.) [Optional: this won’t be graded.] Extend your algorithm to actually return
a perfect matching. And/or, extend your algorithm to non-bipartite graphs. As a hint,
consider the matrix

A =


xij {i, j} ∈ E and i < j

−xji {i, j} ∈ E and i ≥ j

0 else

SOLUTION:

(a) Fix a permutation σ, and consider the matching (not necessarily a matching in G) given
by matching i to σ(i). If this is a matching in G (that is, if (i, σ(i)) ∈ E for all i), then

n∏
i=1

Ai,σ(i) =

n∏
i=1

xi,σ(i) =: xσ

is a monomial that is not identically zero. On the other hand, if this is not a matching
in G, then

n∏
i=1

Ai,σ(i) = 0.

Thus, we can write the determinant as

det(A) =
∑
σ∈Sn

sgn(σ)1[σ corresponds to a perfect matching ]xσ.

In particular, if there is no perfect matching, then the sum is empty, and det(A) ≡ 0.
On the other hand, if there is a perfect matching, then there is at least one monomial
in the sum. Since xσ ̸= xσ′ for σ ̸= σ′, if there are multiple nonzero monomials they
cannot cancel, and so det(A) ̸≡ 0.

(b) The algorithm is:

• Choose a set S ⊆ R of size 10n, arbitrarily.

• Construct the matrix A′, where xij variables in A are replaced by corresponding
values rij ∈ S is chosen uniformly at random for each {i, j} ∈ E. This takes time
O(n2).

• Compute det(A′) in O(n3) operations.

• If det(A′) = 0, return “no perfect matching.” Otherwise, return “perfect matching.”
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To see that this is correct, notice that if G has no perfect matching, then by part (a),
det(A) will be identically equal to zero, so the algorithm above will always return “no
perfect matching.” On the other hand, if there is a perfect matching, then det(A) will
not be an identically zero polynomial. In this case the Schwartz-Zippel Lemma implies
that the probability that det(A′) = 0 is at most n/|S|, since the degree of det(A) is n.
Our choice of |S| = 10n means that we will succeed with probability at least 9/10, as
desired.

2. (8 pt.) Suppose you are rolling a fair, 6-sided die repeatedly.

(a) (4 pt.) What is the expected number of rolls until you get two 3’s in a row (counting
both 3’s)? Justify your answer.

[HINT: The answer is not 36... ]

[HINT: If you find yourself doing a tedious computation, try to think of a simpler way.
Perhaps look to the mini-lecture on linearity of expectation for some inspiration... ]

(b) (4 pt.) What is the expected number of rolls until you get a 3 followed by either a 3 or
a 4 (counting both rolls)? Justify your answer.

(c) (0 pt.) [Optional: this won’t be graded] What is the expected number of rolls until
you get a 3 followed by a 4 (counting both rolls)?

SOLUTION:

(a) The answer is 42. Let X be the expected number of rolls until you get two 3’s. We have

EX =
2

36
+

5

36
(2 + EX) +

5

6
(1 + EX).

This is because:

• With probability 1/36, we get 3,3 on the first two rolls, and the answer is 2.

• With probability (1/6) · (5/6) = 5/36 we get 3 and then not-a-3 on the first two
rolls. In this case the answer is 2 plus however many times it takes to roll two 3s in
the future.

• With probability 5/6, we get a non-3 on the first roll. In this case the answer is 1
plus however many times it takes to roll two 3s in the future.

Solving for EX, we get EX = 42.

(b) Following similar logic above, the answer is 21. Let X be the expected number of rolls
until you get two 3’s or a 3,4. We have

EX =
2

36
· 2 + 4

36
(2 + EX) +

5

6
(1 + EX).

Solving for EX yields 21.
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(c) The same logic is difficult (for me) to extend to this last part, since if we first roll ”33”
then there’s not a nice way to get EX to show up directly so that we can solve for it.
Instead we have to introduce another variable, Y , which is the number of rolls left after
we’ve just rolled a 3. Then we have

EX = 1 +
5

6
EX +

1

5
EY,

since if we haven’t just rolled a 3, we need to roll once, and then if we’ve rolled something
other than a 3 (with probability 5/6), we start again with EX. On the other hand, if we
did roll a 3 (with probability 1/6), then we have to wait EY in expectation. Similarly,
we can write

EY = 1 +
4

6
EX +

1

6
EY,

because we have to make one roll; if it’s a 4 then that’s it, we’re done. If it’s a 3, then we
again have EY to wait in expectation. And if it’s neither a 3 nor a 4 (with probability
4/6), then we’re back at the very beginning and have to wait EX again in expectation.

Solving these two equations for EX and EY yields EX = 36, EY = 30, so the answer is
36.

[Note 1: this sort of argument will be a lot easier once we have some notation from
Markov chains, which we will see later in the course.]

[Note 2: It may seem confusing that the answer to 2(a) is larger than the answer to
2(c) – what accounts for this difference? if we have to get two 3s in a row, then when
we get a single 3 followed by a value that is not a 3, we get reset all the way back to our
starting state. On the other hand, if we are trying to get a 3 followed by a 4, then after
we get a single 3, we have two possible favorable outcomes for the next roll: a 4 makes
us win, and a 3 keeps us in a more favorable ”one step from victory” state rather than
booting us back to the beginning.]

3. (10 pt.) Suppose you are given a fair coin (that is, it lands heads/tails with probability 1/2
each) and want to use it to “simulate” a coin that lands heads with probability exactly 1/3.
Specifically, you will design an algorithm whose only access to randomness is by flipping the
fair coin (repeatedly, if desired), and your algorithm should return “heads” with probability
exactly 1/3 and “tails” with probability exactly 2/3.

(a) (4 pt.) Prove that it is impossible to do this if the algorithm is only allowed to flip the
fair coin at most 1, 000, 000, 000 times.

[HINT: Read the next two parts of the problem first... ]

(b) (4 pt.) Design an algorithm for the above task that flips the fair coin a finite number
of times in expectation.

(c) (2 pt.) Show that for any value v in the interval [0, 1], there is an algorithm that flips
a fair coin at most 2 times in expectation, and outputs “heads” with probability v and
“tails” with probability 1− v.
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Note: if you do this part correctly, you can write “follows from (c)” in part (b) and get
full credit for both parts.

[HINT: Think about representing the desired probability in its binary representation. ]

SOLUTION:

(a) For any event X defined in terms of the outcomes of at most n = 1, 000, 000, 000 fair
coin flips, the probability of X will be some integer multiple of 1/2n. [If this isn’t clear
to you, stop and think about it!] Since 2n contains no multiples of 3, there is no integer
k for which k/2n = 1/3, and hence no algorithm flipping at most n coins can output
“heads” with probability exactly 1/3.

(b) There are many correct solutions. One nice algorithm is the following: flip the fair
coin twice. If the outcomes are HH, return “heads”, if the outcomes are HT or TH
return “tails”. If the outcome is TT then repeat. The expected number of flips of this
algorithm is 2 + 21

4 + 2 1
42

+ 2 1
43

. . . = 24
3 < 3. To see why the algorithm is correct,

note that the probability of returning “heads” immediately after the first two tosses is
1
4 , the probability of returning heads after flipping exactly 4 four coins is 1/42 (namely
the first two coins must land TT and the next two must land HH), and in general, the
probability of returning “heads” immediately after flipping 2i coins is 1/4i. Hence the
overall probability of returning “heads” is 1/4 + 1/42 + 1/43 + . . . = 1/3, as desired.

(c) The algorithm is the following. Write v =
∑∞

i=1 bi2
−i, where bi ∈ {0, 1}. Then consider

the following protocol:

• For i = 1, 2, . . .:

– Flip a fair coin.

– If bi = 1 and the coin is heads, return HEADS and stop flipping.

– if bi = 0 and the coin is tails, return TAILS and stop flipping.

First, we analyze the probability that this procedure outputs HEADS. We have

Pr[alg outputs HEADS] =
∞∑
i=1

Pr[alg outputs HEADS on iteration i].

The probability that the algorithm outputs HEADS on iteration i is

Pr[output HEADS on i] = Pr[output HEADS on i|still flipping at time i] · Pr[still flipping at time i]

=

{
0 · 2−(i−1) bi = 0
1
2 · 2−(i−1) bi = 1

= bi2
−i.

Thus,

Pr[alg outputs HEADS] =
∞∑
i=1

bi2
−i = v.

Next we analyze the expected number of flips. At each flip of the algorithm (assuming
we make it that far), we stop flipping with probability 1/2. Thus, by the analysis that

5



we have seen in class for the expectation of a geometric random variable, the expected
number of flips until we stop is 2. (Note that if the binary representation of v is not
infinitely long, then we could stop the algorithm above early and output TAILS; in this
case the expected number of flips might be less).

4. (8 pt.) Its that time of year when folks all around campus are deciding whether or not to
purchase a parking permit. The tricky part is that you don’t know how many times a parking
attendant will check your car over the course of the year—maybe they will just check each
day for the first week of the quarter to scare you into buying a permit, maybe it will be every
day, or maybe there are no parking attendants. Don’t fret–we’re here to help you navigate
this big decision. [The simple answer might be to just not have a car...]

Suppose each parking ticket is $1 and a parking permit costs $10 and you can purchase a
parking permit at any point (i.e. after paying 3 tickets, you can decide to buy a permit). If
a parking attendant checks your car and you don’t have a permit, you will get a ticket. Let
T represent the total number of times that a parking attendant will check your car. If we
knew T , the optimal strategy would be to buy a parking permit at the very beginning of the
quarter if T > 10, and otherwise, just pay the parking tickets, and we would incur a cost of
min(T, 10). A strategy is a policy for deciding when we buy a permit—namely how many
tickets are we willing to receive before we buy a permit. Given a strategy, S, define our regret
to be a function of T corresponding to the amount we pay using strategy S if the attendant
came T times, minus the cost of the optimal policy if we had known in advance what T was:

RegretS(T ) := Cost(S, T )−min(T, 10).

. Our goal will be to find a strategy S that minimizes the worst-case regret, maxT (RegretS(T )).

(a) (2 pt.) Show that the worst-case regret of any deterministic strategy is at least 10.
Namely, a deterministic strategy corresponds to buying a permit after exactly w tickets
for some fixed value of w ∈ {0, 1, . . . ,∞}. Show that for each such w, there exists a T
that would cause us to incur a regret of at least 10.

(b) (2 pt.) We will now consider randomized strategies: such strategies can be thought of
as a distribution DS over {0, 1, 2, . . .}: we draw w from this distribution, and will buy a
permit after the wth ticket. For any T , each such a strategy will incur an expected cost
E[Cost(S, T )] =

∑∞
i=0 Pr[w = i] · Cost(w, T ), where Cost(w, T ) is T if w > T [ie we

never bought the permit and paid T tickets], and 10 + w if w ≤ T [ie we paid the first
w tickets then bought the $10 permit]. Suppose our goal is to minimize the worst-case
expected regret :

max
T

(E[Cost(S, T )]−min(T, 10)) .

Is minimizing this quantity a reasonable goal? Discuss in two or three sentences. (If you
think the worst-case nature of this quantity is too pessimistic/paranoid/hedged, try to
propose an alternate metric.)

(c) (3 pt.) Suppose our randomized strategy corresponds to drawing w from a geometric
distribution with parameter p. Namely, before any tickets could be given, and after
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each ticket received, we flip a coin that lands heads with probability p, and if the coin
does land heads, we buy a permit. What is the choice of p that minimizes our worst-
case expected regret, and what is the worst-case expected regret for that choice of p?
[Justify your answer, though feel free to write down a messy expression for the worst-
case expected regret as a function of p, and optimize by writing a python script. Do make
sure that your answer sanity-checks—-p shouldn’t be too big or too small, and the worst-
case expected regret should be quite a bit better than the 10 we get with a deterministic
strategy.]

(d) (1 pt.) Does the policy from the previous part seem like something you might actually
use in real-life (assuming that permits cost 10X the cost of a ticket)? Discuss in at most
two sentences.

(e) (Bonus + 1 point) Suppose a ticket costs $K but a permit costs $Z dollars. Intuitively,
the optimal choice of p should scale according to K/Z. Suppose p = cKZ for some
constant c. Find the optimal constant c in the limiting case as K/Z goes to zero. In
the limit, by what factor is this worst-case expected regret better than the Z worst-case
regret of deterministic strategies?

(f) (Bonus/food-for-thought: 0 points) Either in the case of a permit costing $10, or in
the limiting case as a permit cost gets large, what is the optimal randomized strat-
egy? Namely, if we can pick the time at which we get a permit, w, according to any
distribution—not necessarily a geometric distribution—what distribution should we use,
and how much better is the worst-case expected regret versus that of the best geometric
distribution from parts (c) or (d)?

SOLUTION:

(a) Given a deterministic strategy that would purchase a permit after the rth ticket, if r is
infinite (ie we never purchase a permit), then for any T ≥ 20 we would have regret at
least 10. For finite r, in the case that T = r, we would have regret exactly 10.

(b) Any thoughtful response received full credit.

(c) The easiest solution is to write a script that computes the expected regret for
a given value of p and T , then for each value of p, finding the worst-case T ,
and then finding the p that minimizes that. Here is a plot of the worst-case ex-
pected regret as a function of p. Note that for p ≈ 0, the regret is unbounded
(ie you might need to pay 100 tickets!), and for p ≈ 1, the regret is close to
10, since you’ll probably buy the permit on day 0, but if T = 0 you’ve wasted
the cost of the permit and should have just not bought the permit. The mini-
mum is at p ≈ 0.175, in which case the worst-case expected regret is roughly 4.75.
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(d) Any thoughtful response received full credit.

(e) Solutions to [most] bonus questions won’t be posted, but happy to discuss in office hours.

(f) Solutions to [most] bonus questions won’t be posted, but happy to discuss in office hours.
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