
Problem Set 2 CS265, Autumn 2023
Due: 10/13 (Friday) at 11:59pm on Gradescope

Please follow the homework policies on the course website.

1. (8 pt.) [Counting small cuts.]

Recall that a cut of an undirected graph G = (V,E) is a partition of the vertices V into
nonempty disjoint sets A and B. A min cut of G is a cut that minimizes the number of edges
that cross the cut (have one endpoint in A and one in B).

In the following problems, assume G is a connected graph on n vertices (i.e., there is no cut
with 0 edges that cross it).

(a) (2 pt.) A graph may have many possible min cuts. Prove that G has at most n(n−1)/2
min cuts.

(b) (2 pt.) Show that part (a) is tight; for every n ≥ 2, give a connected graph on n vertices
with exactly n(n− 1)/2 min cuts.

(c) (4 pt.) Let α be a positive integer. Suppose that any min cut of G has k edges that
cross the cut. An α-small cut of G is a cut that has at most αk edges that cross the
cut. Prove that the number of such cuts is at most O(n2α).

[Note: If you find it easier, you’ll still get full credit if you prove a bound of O((2n)2α).]

[HINT: Consider stopping Karger’s algorithm early and then outputting a random cut
in the contracted graph. What is the probability that this returns a fixed α-small cut of
G?]

(d) (0 pt.) [Optional: this won’t be graded] Let f(n, α) be the maximum number of
α-small cuts that an n vertex graph can have. What are the tightest upper and lower
bounds you can find for f(n, α)?

SOLUTION:

(a) Fix a min cut of G. We know from class that when Karger’s algorithm is run on G,
outputs this particular min cut with probability at least 2/(n(n− 1)). Suppose that G
has t min cuts C1, C2, ..., Ct. Applying the above argument for every min cut, we have
that

1 ≥
t∑

i=1

Pr[Karger’s outputs Ci] ≥ t · 2

n(n− 1)

and so t ≤ n(n− 1)/2.

(b) Consider a cycle on n vertices. Let’s consider the minimum possible cut. If there were
only one edge that goes across a given cut, then the endpoints of every other edge are on
the same side of the cut. But all the other edges form a path of length n− 1 including
all the vertices, so then every vertex must be on the same side of the cut. This is a
contradiction.

1

The cut that separates any vertex from the rest has two edges that go across the cut, so
every min cut must have size 2. Moreover, for every pair of edges, there is a cut where
these two edges are the only ones that cross the cut. Hence, there are

(
n
2

)
= n(n− 1)/2

min cuts in this graph.

(c) Fix an α-small cut C. Suppose that we run Karger’s algorithm until 2α vertices remain,
and then we output a uniformly random cut of the contracted graph. We consider the
probability that this outputs our fixed cut.

First, we consider the probability that after the steps of Karger’s algorithm, the α-small
cut remains. Following a similar line of attack to the proof correctness for Karger’s
algorithm, we define Ei denote the event that we do not contract an edge crossing C in
the ith step of the algorithm. We have

Pr[C remains after contractions] = Pr[E1] Pr[E2|E1] · · ·Pr[En−2α | E1, ..., En−2α−1].

While the all of the min cuts may be destroyed by the contractions, we still know that
the size of the min cut can only increase. Therefore, in the ith step of the algorithm,
there still are at least nk/2 edges remaining. Since the number of edges that cross C is
at most αk, we have

Pr[Ei | E1, ..., Ei−1] ≥ 1− αk

(n− i+ 1)k/2
= 1− 2α

n− i+ 1
=

n− i+ 1− 2α

n− i+ 1
.

It follows that,

Pr[C remains after contractions] ≥ n− 2α

n
· n− 2α− 1

n− 1
· · · · · 1

2α+ 1

=
1 · 2 · · · · · 2α

n(n− 1) · · · (n− 2α+ 1)

≥ 22α−1

n2α
.

Finally, note that in a t vertex graph, there are 2t−1 − 1 cuts, since each vertex has two
sides of the cut to choose from, but this double counts by a factor of 2 and includes the
non-cut where every vertex is on one side.

Since 2α vertices remain in the end, the probability that we choose any particular cut
is greater than 1/22α−1. In particular, the probability that we output C, given that C
remains after the contractions is at least 1/22α−1. This gives us

Pr[output C] ≥ 1

22α−1
· 2

2α−1

n2α
=

1

nα
.

By the same argument in part (a), it follows that there are at most n2α α-small cuts.

(d) We can show the following bounds(
n

2α

)
≤ f(n, α) ≤

√
πα

2

(
n

2α

)

2

which pins down f(n, α) within a O(
√
α) factor. For the lower bound, it’s not hard to

see that once again, for the cycle on n vertices, every set of 2α edges are the edges that
go across some cut (In fact, this means that f(n, α) ≥

∑α
k=1

(
n
2k

)
, which can give an

improvement for large α).

For the upper bound, the key observation is that we should actually stop Karger’s earlier,
since the probability guarantee degrades by more than a factor of 1

2 once the number of
vertices goes below 4α. Stopping at this point, we get

Pr[C remains after contractions] ≥ n− 2α

n
· n− 2α− 1

n− 1
· · · · · 2α+ 1

4α+ 1

=
(2α+ 1) · (2α+ 2) · · · · · 4α
n(n− 1) · · · (n− 2α+ 1)

=

(
4α
2α

)(
n
2α

)
≥

1√
2πα

24α(
n
2α

)
using Stirling’s approximation. Now 4α vertices remain in the end, so there are at most
24α−1 possible cuts. We conclude that

Pr[output C] ≥ 1

24α−1
·

1√
2πα

24α(
n
2α

) =
2√

2πα
(
n
2α

)
which gives us the desired result.

2. (12 pt.) [Tightness of Markov’s and Chebyshev’s Inequalities]

(a) (4 pt.) Show that Markov’s inequality is tight. Specifically, for each value c > 1,
describe a distribution Dc supported on non-negative real numbers such that if the
random variable X is drawn according to Dc then (1) E[X] > 0 and (2) Pr[X ≥ cE[X]] =
1/c.

(b) (4 pt.) Show that Chebyshev’s inequality is tight. Specifically, for each value c > 1,
describe a distribution Dc supported on real numbers such that if the random variable
X is drawn according to Dc then (1) E[X] = 0 and Var[X] = 1 and (2) Pr[|X −E[X]| ≥
c
√
Var[X]] = 1/c2.

(c) (4 pt.) [One-sided version of Chebyshev’s Inequality] Prove a one-sided bound on the
distribution of a random variable X given its variance. That is, if Var[X] = 1, what the
best upper bound on Pr[X − E[X] ≥ t]? Give your answer in terms of t. Prove your
bound (a) is true and (b) is tight by coming up with a variable X with distribution Dt

and variance 1 for which Pr[X − E[X] ≥ t] equals your answer.

3

SOLUTION:

(a) Let Dc be the distribution where X = c with probability 1/c and X = 0 with probability
1− 1/c, such that E[X] = 1.

(b) Let Dc be the distribution where X = c with probability 1
2c2

, X = −c with probability
1
2c2

, and X = 0 with probility 1− 1/c2, such that E[X] = 0 and Var[X] = 1.

(c) The correct bound is Pr[X − E[X] ≥ t] ≤ 1
1+t2

. To prove this, for any y,

Pr[X − E[X] ≥ t] = Pr[X − E[X] + y ≥ t+ y] (1)

≤ Pr[(X − E[X] + y)2 ≥ (t+ y)2] (2)

≤ E[(X − E[X] + y)2)]

(t+ y)2
(3)

=
Var[X] + y2

(t+ y)2
(4)

=
1 + y2

(t+ y)2
. (5)

To get the tightest bound, choose y to minimize 1+y2

(t+y)2
. We take the derivative to do

this:

d

dy

1 + y2

(t+ y)2
=

(t+ y)2(2y)− (1− y2)(2(t+ y))

(t+ y)4
, (6)

At the minimum, the derivative must be zero, so we have (t+y)2(2y)−(1+y2)(2(t+y)) =
0, so (t+ y)y = (1 + y2), and thus y = 1/t. Plugging this in, we get the bound

Pr[X − E[X] ≥ t] ≤ 1 + 1/t2

(t+ 1/t)2
=

1 + t2

(1 + t2)2
=

1

1 + t2
. (7)

To show tightness, consider the distribution Dt which equals t with probability 1
1+t2

and

equals −1/t with probabilty t2

1+t2
. It is easy to check that E[X] = 0 and Var[X] = 1.

3. (9 pt.) [Cutting Losses and Starting Fresh] Suppose someone gives you a device with a
button that, when pressed, runs a randomized algorithm for problem X the with the follow-
ing guarantees: 1) The algorithm has expected runtime 1 minute, and 2) when the algorithm
terminates, it always returns a correct answer. If you press the button before the algo-
rithm terminates, the device simply resets and starts running the same algorithm again (with
new/independent randomness).

(a) (3 pt.) Suppose I have 6 minutes to solve the problem—after 6 minutes even a correct
answer is useless to me. How could I use the device to answer the problem within 6
minutes with a probability of at least 1 − 1/32? [Hint: If I push the button just once,
by Markov’s inequality, the probability I don’t get my answer within 6 minutes might

4

be as large as 1/6. After pushing the button, how long should I wait until I push the
button again?]

(b) (6 pt.) Can you come up with a protocol for re-pushing the button does better than
1−1/32? If so, describe one such strategy and prove that its success probability exceeds
1 − 1/32 by at least 0.001. If not, prove that there is a distribution over runtimes
such that it is impossible to improve upon this success probability. [Hint: If Markov’s
inequality is tight, what does that tell you about the distribution of the runtimes, and
can you exploit that?]

(c) (0 pt.) What is an optimal protocol, and what is the best probability of success that you
can provably always get (no matter the runtime distribution, given that its expectation
is 1)? Feel free to answer this either in the case of 6 minutes, or in the limit as the total
time gets large.

SOLUTION:

(a) Restart after 3 seconds. By Markov’s inequality, the probability the algorithm runs past
3 seconds is at most 1/3, and we get 2 3-second runs in the 6 second time budget, so
the probability we don’t get a solution is the probability that both the first and second
run take more than 3 seconds, namely 1/32.

(b) There are many valid solutions. The high level insight is that if Markov’s inequality
is close to being tight, then there must be a very good probability that the runtime
is very small (close to 0) to offset the significant probability of being large. Hence if
we do a short run, that has a reasonable success probability if our longer runs have a
close-to-worst-case success probability.

Here is one concrete instantiation of this approach. Let X denote the random variable
representing the runtime. X is non-nonnegative and has expectation 1, and hence if
Pr[X > 2.9] > 1/3 − 0.02, then in order for the expectation to be 1, Pr[X < 0.2]
needs to be fairly large. Namely assuming Pr[X > 2.9] > 1/3− 0.02, then 1 = E[X] ≥
2.9(1/3 − 0.02) + 0.2 · Pr[X ∈ [0.2, 2.9]], which implies that Pr[X ∈ [0.2, 2.9]] ≤ (1 −
2.9(1/3 − 0.02)/0.2 < 0.46. Hence Pr[X ≤ 0.2] ≥ 1 − 1/3 − 0.46 > 0.21.. So, consider
running the algorithm for 2.9 minutes, then restart, run for another 2.9 minutes, and
then for another 0.2 minutes. If Pr[X > 2.9] ≤ 1/3− 0.02, then the probability that the
first two runs both fail is already at most (1/3−0.02)2 < 0.1 If Pr[X > 2.9] > 1/3−0.02,
then the probability the final run (the 0.2 minute run) is successful is at least 0.21, and
since, by Markov’s inequality, Pr[X > 2.9] < 1/2.9, the probability all 3 runs fail is at
most (1/2.92)(1− 0.21) < 0.1. Hence we’ve given a proof that the probability of failure
is at most 0.1, which is better than the 1/32 ≈ 0.11 probability of failure of part (a).

(c) In general we won’t post solutions to bonus parts, but feel free to discuss with us in
office hour.

4. (0 pt.) [This whole problem is optional and will not be graded.] In this problem,
you’ll analyze a different primality test than we saw in class. This one is called the Agrawal-
Biswas Primality test.

5

Given a degree d polynomial p(x) with integer coefficients, for any polynomial q(x) with
integer coefficients, we say q(x) ≡ t(x) mod (p(x), n) if there exists some polynomial s(x)
such that q(x) = s(x) · p(x) + t(x) mod n. (Here, we say that

∑
i cix

i =
∑

i c
′
ix

i mod n if
and only if ci = c′i mod n for all i.) For example, x5+6x4+3x+1 ≡ 3x+1 mod (x2+x, 5),
since (x3)(x2 + x) + (3x+ 1) = x5 + x4 + 3x+ 1 ≡ x5 + 6x4 + 3x+ 1 mod 5.

Agrawal-Biswas Primality Test.
Given n:

• If n is divisible by 2,3,5,7,11, or 13, or is a perfect power (i.e. n = cr for integers c and r)
then output composite.

• Set d to be the smallest integer greater than log n, and choose a random degree d polynomial
with leading coefficient 1:

r(x) = xd + cd−1x
d−1 + . . .+ c1x+ c0,

by choosing each coefficient ci uniformly at random from {0, 1, . . . , n− 1}.

• If (x+ 1)n ≡ xn + 1 mod (r(x), n) then output prime, else output composite.

Consider the following theorem (you can assume this if you like, or for even more optional
work, try to prove it!):

Theorem 1 (Polynomial version of Fermat’s little theorem).

• If n is prime, then for any integer a, (x− a)n = xn − a mod n.

• If n is not prime and is not a power of a prime, then for any a s.t. gcd(a, n) = 1 and
any prime factor p of n, (x− a)n ̸= xn − a mod p.

First, show that if n is prime, then the Agrawal-Biswas primality test will always return
prime.

Now, we will prove that if n is composite, the probability over random choices of r(x) that
the algorithm successfully finds a witness to the compositeness of n (and hence returns com-
posite) is at least 1

4d .

(a) Using the polynomial version of Fermat’s Little Theorem, and the fact that, for prime q,
every polynomial over Zq that has leading coefficient 1 (i.e. that is “monic”) has a unique
factorization into irreducible monic polynomials, prove that the number of irreducible
degree d factors that the polynomial (x + 1)n − (xn + 1) has over Zp is at most n/d,
where p is any prime factor of n. (A polynomial is irreducible if it cannot be factored,
for example x2 + 1 = (x + 1)(x + 1) mod 2 is not irreducible over Z2, but x2 + 1 is
irreducible over Z3.)

[HINT: Even though this question sounds complicated, the proof is just one line...]

(b) Let f(d, p) denote the number of irreducible monic degree d polynomials over Zp. Prove
that if n is composite, and not a power of a prime, the probability that r(x) is a witness

to the compositeness of n is at least f(d,p)−n/d
pd

, where p is a prime factor of n.

[HINT: pd is the total number of monic degree d polynomials over Zp.]

6

(c) Now complete the proof, and prove that the algorithm succeeds with probability at least
1/(4d), leveraging the fact that the number of irreducible monic polynomials of degree
d over Zp is at least pd/d − pd/2. (You should be able to prove a much better bound,
though 1/4d is fine.)

[HINT: You will also need to leverage the fact that we chose d > log n and also explicitly
made sure that n has no prime factors less than 17.]

SOLUTION:

First, by the polynomial version of FLT (with a = −1), we know that (xn+1)− (xn+1) ≡ 0
mod n when n is prime, which means that this is true mod any polynomial as well. This
means that when n is prime, the algorithm always outputs “prime.”

(a) Let c be the leading coefficient of (xn+1)−(xn+1) over Zp. Since p is a prime and c (by
definition) is nonzero, c has an inverse c−1. Then the polynomial c−1((xn+1)−(xn+1))
is monic, and has degree at most n. Writing this polynomial as its factorization into
irreducible polynomials, we can see that the number of irreducible degree factors must
be at most n/d (else the polynomial would have degree > n).

(b) Suppose that n is composite and not a power of a prime. First we prove a couple of
results that will help us trade between mod n and mod p.

For each coefficient ci of r(x), ci is equally likely to be anything mod p since p divides
n (the elements of Zn that map to t ∈ Zp are always the n/p elements t + kp for
0 ≤ k < n/p). Hence, if we interpret r(x) modulo p, then each of the pd monic degree d
polynomials is equally likely to be generated.

In particular, the probability that r(x) mod p is one of the monic irreducible degree d

polynomials that is not a factor of (x + 1)n − (xn + 1) is at least f(d,p)−n/d
pd

, since each

of the pd polynomials is equally likely, there are f(d, p) polynomials that are monic and
irreducible, and at most n/d of them are factors of (x+ 1)n − (xn + 1) (by part a).

Now we claim that

(x+1)n − (xn +1) ≡ 0 (mod (r(x), n)) =⇒ (x+1)n − (xn +1) ≡ 0 (mod (r(x), p)).

Suppose that the left side is true, and let (x + 1)n − (xn + 1) ≡ s(x)r(x) + t(x)
(mod (r(x), p)). Since Zp is a subgroup of Zn, it follows that (x + 1)n − (xn + 1) ≡
s(x)r(x) + t(x) (mod (r(x), n)), which means that t(x) ≡ 0 (mod n). This means that
each coefficient in t(x) is divisible by n, which means that they are also divisible by p,
and so t(x) ≡ 0 (mod p) as well. Hence, (x+ 1)n − (xn + 1) ≡ 0 (mod (r(x), p)).

The contrapositive of this tells us that

(x+1)n − (xn +1) ̸≡ 0 (mod (r(x), p)) =⇒ (x+1)n − (xn +1) ̸≡ 0 (mod (r(x), n)).

Hence, if r(x) mod p is one of the monic irreducible degree d polynomials that is not a
factor of (x+1)n− (xn+1), then we know that the left statement is true, and therefore
the right statement is also true. This is exactly the condition the algorithm uses to
say that n is composite. Hence, if r(x) mod p is one of the monic irreducible degree

7

d polynomials that is not a factor of (x + 1)n − (xn + 1), then the algorithm correctly

outputs composite, and since this happens with probability at least f(d,p)−n/d
pd

, this is a
lower bound on the success probability.

(c) Our probability of success is at least

f(d, p)− n/d

pd
≥ pd/d− pd/2 − n/d

pd
=

1

d
− 1

pd/2
− n

dpd
.

Since d > log2 n, we have n < 2d. Hence

n

dpd
<

1

d
·
(
2

p

)d

≤ 1

d
·
(

2

17

)d

≤ 2

17d
.

We also have for all d ≥ 1,
4d ≤ 4d < 17d/2 ≤ pd/2

which means that 1
pd/2

< 1/4d. Hence, the probability of success is at least

1

d
− 1

4d
− 2

17d
≥ 1

4d

as desired.

8

