Due: 10/13 (Friday) at 11:59pm on Gradescope
Please follow the homework policies on the course website.

1. (8 pt.) [Counting small cuts.]

Recall that a cut of an undirected graph $G=(V, E)$ is a partition of the vertices V into nonempty disjoint sets A and B. A \min cut of G is a cut that minimizes the number of edges that cross the cut (have one endpoint in A and one in B).
In the following problems, assume G is a connected graph on n vertices (i.e., there is no cut with 0 edges that cross it).
(a) (2 pt.) A graph may have many possible min cuts. Prove that G has at most $n(n-1) / 2$ min cuts.
(b) (2 pt .) Show that part (a) is tight; for every $n \geq 2$, give a connected graph on n vertices with exactly $n(n-1) / 2$ min cuts.
(c) ($4 \mathbf{p t}$.) Let α be a positive integer. Suppose that any min cut of G has k edges that cross the cut. An α-small cut of G is a cut that has at most αk edges that cross the cut. Prove that the number of such cuts is at most $O\left(n^{2 \alpha}\right)$.
[Note: If you find it easier, you'll still get full credit if you prove a bound of $O\left((2 n)^{2 \alpha}\right)$.] [HINT: Consider stopping Karger's algorithm early and then outputting a random cut in the contracted graph. What is the probability that this returns a fixed α-small cut of G ?]
(d) (0 pt.) [Optional: this won't be graded] Let $f(n, \alpha)$ be the maximum number of α-small cuts that an n vertex graph can have. What are the tightest upper and lower bounds you can find for $f(n, \alpha)$?

2. (12 pt.) [Tightness of Markov's and Chebyshev's Inequalities]

(a) (4 pt.) Show that Markov's inequality is tight. Specifically, for each value $c>1$, describe a distribution D_{c} supported on non-negative real numbers such that if the random variable X is drawn according to D_{c} then (1) $\mathbb{E}[X]>0$ and (2) $\operatorname{Pr}[X \geq c \mathbb{E}[X]]=$ $1 / c$.
(b) (4 pt.$)$ Show that Chebyshev's inequality is tight. Specifically, for each value $c>1$, describe a distribution D_{c} supported on real numbers such that if the random variable X is drawn according to D_{c} then (1) $\mathbb{E}[X]=0$ and $\operatorname{Var}[X]=1$ and (2) $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq$ $c \sqrt{\operatorname{Var}[X]}]=1 / c^{2}$.
(c) (4 pt.) [One-sided version of Chebyshev's Inequality] Prove a one-sided bound on the distribution of a random variable X given its variance. That is, if $\operatorname{Var}[X]=1$, what the best upper bound on $\operatorname{Pr}[X-\mathbb{E}[X] \geq t]$? Give your answer in terms of t. Prove your bound (a) is true and (b) is tight by coming up with a variable X with distribution D_{t} and variance 1 for which $\operatorname{Pr}[X-\mathbb{E}[X] \geq t]$ equals your answer.
3. ($\mathbf{9} \mathbf{~ p t .) ~ [C u t t i n g ~ L o s s e s ~ a n d ~ S t a r t i n g ~ F r e s h] ~ S u p p o s e ~ s o m e o n e ~ g i v e s ~ y o u ~ a ~ d e v i c e ~ w i t h ~ a ~}$ button that, when pressed, runs a randomized algorithm for problem X the with the following guarantees: 1) The algorithm has expected runtime 1 minute, and 2) when the algorithm terminates, it always returns a correct answer. If you press the button before the algorithm terminates, the device simply resets and starts running the same algorithm again (with new/independent randomness).
(a) ($\mathbf{3} \mathbf{p t}$.) Suppose I have 6 minutes to solve the problem-after 6 minutes even a correct answer is useless to me. How could I use the device to answer the problem within 6 minutes with a probability of at least $1-1 / 3^{2}$? [Hint: If I push the button just once, by Markov's inequality, the probability I don't get my answer within 6 minutes might be as large as $1 / 6$. After pushing the button, how long should I wait until I push the button again?]
(b) (6 pt.$)$ Can you come up with a protocol for re-pushing the button does better than $1-1 / 3^{2}$? If so, describe one such strategy and prove that its success probability exceeds $1-1 / 3^{2}$ by at least 0.001 . If not, prove that there is a distribution over runtimes such that it is impossible to improve upon this success probability. [Hint: If Markov's inequality is tight, what does that tell you about the distribution of the runtimes, and can you exploit that?]
(c) ($0 \mathbf{~ p t}$.$) What is an optimal protocol, and what is the best probability of success that you$ can provably always get (no matter the runtime distribution, given that its expectation is 1$)$? Feel free to answer this either in the case of 6 minutes, or in the limit as the total time gets large.
4. (0 pt.) [This whole problem is optional and will not be graded.] In this problem, you'll analyze a different primality test than we saw in class. This one is called the AgrawalBiswas Primality test.
Given a degree d polynomial $p(x)$ with integer coefficients, for any polynomial $q(x)$ with integer coefficients, we say $q(x) \equiv t(x) \bmod (p(x), n)$ if there exists some polynomial $s(x)$ such that $q(x)=s(x) \cdot p(x)+t(x) \bmod n$. (Here, we say that $\sum_{i} c_{i} x^{i}=\sum_{i} c_{i}^{\prime} x^{i} \bmod n$ if and only if $c_{i}=c_{i}^{\prime} \bmod n$ for all i.) For example, $x^{5}+6 x^{4}+3 x+1 \equiv 3 x+1 \bmod \left(x^{2}+x, 5\right)$, since $\left(x^{3}\right)\left(x^{2}+x\right)+(3 x+1)=x^{5}+x^{4}+3 x+1 \equiv x^{5}+6 x^{4}+3 x+1 \bmod 5$.

Agrawal-Biswas Primality Test.

Given n :

- If n is divisible by $2,3,5,7,11$, or 13 , or is a perfect power (i.e. $n=c^{r}$ for integers c and r) then output composite.
- Set d to be the smallest integer greater than $\log n$, and choose a random degree d polynomial with leading coefficient 1 :

$$
r(x)=x^{d}+c_{d-1} x^{d-1}+\ldots+c_{1} x+c_{0},
$$

by choosing each coefficient c_{i} uniformly at random from $\{0,1, \ldots, n-1\}$.

- If $(x+1)^{n} \equiv x^{n}+1 \bmod (r(x), n)$ then output prime, else output composite.

Consider the following theorem (you can assume this if you like, or for even more optional work, try to prove it!):

Theorem 1 (Polynomial version of Fermat's little theorem).

- If n is prime, then for any integer $a,(x-a)^{n}=x^{n}-a \bmod n$.
- If n is not prime and is not a power of a prime, then for any a s.t. $\operatorname{gcd}(a, n)=1$ and any prime factor p of $n,(x-a)^{n} \neq x^{n}-a \bmod p$.

First, show that if n is prime, then the Agrawal-Biswas primality test will always return prime.
Now, we will prove that if n is composite, the probability over random choices of $r(x)$ that the algorithm successfully finds a witness to the compositeness of n (and hence returns composite) is at least $\frac{1}{4 d}$.
(a) Using the polynomial version of Fermat's Little Theorem, and the fact that, for prime q, every polynomial over \mathbb{Z}_{q} that has leading coefficient 1 (i.e. that is "monic") has a unique factorization into irreducible monic polynomials, prove that the number of irreducible degree d factors that the polynomial $(x+1)^{n}-\left(x^{n}+1\right)$ has over \mathbb{Z}_{p} is at most n / d, where p is any prime factor of n. (A polynomial is irreducible if it cannot be factored, for example $x^{2}+1=(x+1)(x+1) \bmod 2$ is not irreducible over \mathbb{Z}_{2}, but $x^{2}+1$ is irreducible over \mathbb{Z}_{3}.)
[HINT: Even though this question sounds complicated, the proof is just one line...]
(b) Let $f(d, p)$ denote the number of irreducible monic degree d polynomials over \mathbb{Z}_{p}. Prove that if n is composite, and not a power of a prime, the probability that $r(x)$ is a witness to the compositeness of n is at least $\frac{f(d, p)-n / d}{p^{d}}$, where p is a prime factor of n.
[HINT: p^{d} is the total number of monic degree d polynomials over \mathbb{Z}_{p}.]
(c) Now complete the proof, and prove that the algorithm succeeds with probability at least $1 /(4 d)$, leveraging the fact that the number of irreducible monic polynomials of degree d over \mathbb{Z}_{p} is at least $p^{d} / d-p^{d / 2}$. (You should be able to prove a much better bound, though $1 / 4 d$ is fine.)
[HINT: You will also need to leverage the fact that we chose $d>\log n$ and also explicitly made sure that n has no prime factors less than 17.]

