
Problem Set 3 Solution CS265, Autumn 2023

1. (11 pt.) Aggregating Guesses

In this problem, we’ll consider several different settings where we are aggregating a large
number of noisy, unbiased estimates. Suppose a class has n students. Each student is asked
to estimate the current temperature. Assume that they each provide independent, unbiased
estimates, with Xi denoting the ith student’s guess. Let vi denote Var[Xi].

(a) (4 pt.) Suppose we know each of the vi’s and decide to compute a weighted combination
Z =

∑
iwiXi, where the weights wi ≥ 0 are chosen so as to minimize the variance of

Z, subject to
∑

iwi = 1. What are those optimal weights as a function of the vi’s, and
roughly how accurate will Z be? Please give an answer of the form: “with probability
at least 0.9, Z will be within blah of the true temperature, where blah is a function of
the vi’s.

(b) (5 pt.) For this part, assume each Xi is drawn from a normal (Gaussian) distribution,
whose mean is the true temperature, and whose variance is 1. Roughly how accurate
should we expect the median of the n guesses to be? As above, please give an answer of
the form: “with probability at least 0.9, the median of the Xi’s will be within blah of the
true temperature,” where blah is a function of n. Your value of blah should be accurate
up to a constant factor and use big-Oh notation, for example O(1/n3/4) or something
like that.

[HINT: The following basic fact about a Gaussian should be helpful, and is the only
property of a Gaussian that you will need: if Y is a Gaussian with mean µ and variance
1, for any ϵ ∈ (0, 1/2) Pr[Y < µ− ϵ] = Pr[Y > µ+ ϵ] < 1/2− 0.3ϵ. ]

(c) (2 pt.) Answer the same question as above for the mean of the n values Xi. How do
your answers compare?

(d) (0 pt.) [Optional: This is a research-level problem.] As above, suppose each Xi

is independently drawn from a normal distribution whose mean is the true temperature,
and variance vi. Assume you know the (multi)set of the vi’s, but you don’t know which
variance corresponds to which guess. How well should you expect to do, and is there an
efficient algorithm that achieves this?

(e) (0 pt.) [Optional: This is a research-level problem.] Suppose we are in the setting
above, but don’t know anything about the variances. What is a near-optimal algorithm,
and how well will it do, as a function of the (unknown) list of variances v1, . . . .?

[HINT: Note that if two Xi’s are identical (or super, super close) then we know that
two of the variances are 0 (or really, really small), and hence either of those Xi’s would
give an extremely accurate guess, no matter what the other n− 2 guesses are... ]

SOLUTION:

a) We have Z =
∑

iwiXi and vi = Var(Xi), so Var(Z) =
∑

iw
2
i vi. We impose the

constraint
∑

iwi = 1 so that E[Z] has the correct value. To pick weights that minimize
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Var(Z) subject to this constraint, we use Lagrange multipliers. Let

L(w1, . . . , wn, λ) =
∑
i

w2
i vi − λ

(∑
i

wi − 1

)
=
∑
i

(w2
i vi − λwi) + λ.

When 0 = ∂L
∂wi

= 2wivi − λ, we get wi = λ/(2vi). Using the constraint
∑

iwi = 1, we

get wi = 1/
(
vi
∑

j(1/vj)
)
. With this choice of weights,

Var(Z) =
∑
i

(
1

vi
∑

j
1
vj

)2

vi =

(
1∑
j

1
vj

)2(∑
i

1

vi

)
=

1∑
i
1
vi

.

To provide a concrete bound, we want to find c such that

P(|Z − E[Z]| ≤ c) ≥ 0.9.

Equivalently, we want

P(|Z − E[Z]| ≥ c) ≤ Var(Z)

c2
= 1− 0.9.

Taking c =
√

Var(Z)/0.1, we get

P

(
|Z − E[Z]| ≤

√
10∑
i
1
vi

)
≥ 0.9.

b) Fix 0 < ε < 1/2. Let Yi be an indicator random variable that is 1 when Xi < µ− ε and
0 otherwise, where µ = E[Xi] is the true temperature. Then

E[Yi] = P(Xi < µ− ε) ≤ 1/2− 0.3ε.

Write Y =
∑

i Yi. The median of the Xi is less than µ − ε if and only if Y > n/2. At
this point we can use Chebyshev’s inequality to bound the probability that Y > n/2.
We have

Var(Y ) =
∑
i

Var[Yi] = np(1− p) ≤ n,

where p ≤ 1/2 − 0.3ε is the probability that Yi is equal to 1. Thus, by Chebyshev’s
inequality,

P[Y > n/2] ≤ P[(Y − EY ) > 0.3ϵn

≤ Var[Y ]

(0.3ϵ)2n2

≤ 1

(0.3ϵ)2n
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Thus, if we take ϵ = c/
√
n for c =

√
20/0.3, we can guarantee that this is at most 0.05.

In particular, with probability at least 0.95, the median is no smaller than µ−c/
√
n. The

same argument shows that with probability at least 0.95, the median is no larger than
µ + c/

√
n, and altogether, with probability at least 0.9, the median is within O(1/

√
n)

of µ.

Alternate solution: We could also use a Chernoff bound to bound the probability that
Y > n/2. That would look like this:

P
(
Y >

n

2

)
= P

(
Y >

n/2

E[Y ]
E[Y ]

)
≤ P

(
Y >

n/2

n/2− 0.3εn
E[Y ]

)
= P

(
Y >

(
1 +

0.3ε

1/2− 0.3ε

)
E[Y ]

)
≤ exp

(
−E[Y ]

(
0.3ε

1/2− 0.3ε

)2

/3

)
(Lecture 5, Corollary 5)

= exp

(
− n(0.3ε)2

3(1/2− 0.3ε)

)
= exp(−O(nε2)).

Setting exp(−O(nε2)) equal to a constant and solving for ε, there is a 0.9 probability
that the median of the Xi is no less than µ − O(1/

√
n). With the same argument, we

get the same bound for the median being no larger than µ+O(1/
√
n).

c) Let X = 1
n

∑
iXi be the average of the Xi. Then we can compute the variance of X as

Var[X] =
1

n2

∑
i

Var(Xi) =
1

n
.

Therefore, by Chebyshev’s inequality,

P[|X − µ| > ϵ] ≤ 1/n

ϵ2
.

In particular, if ϵ =
√
10/n, this is at most 0.1, and we conclude that with probability

at least 0.9, X is within O(1/
√
n) of the true mean µ. So we get similar behavior as we

did with the median.

2. (11 pt.) Concentration without Independence

A computer system has n different failure modes, each of which happens with a small proba-
bility. Fortunately, the system is designed to be sufficiently robust in the following sense: as
long as less than half of the failures occur, things are fine; otherwise, a large-scale crash will
happen. We want to make sure that the probability of crashing is small enough.

To model the above scenario, we define n Bernoulli random variables X1, . . . , Xn. Each Xi
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is the indicator of the i-th failure mode, i.e., Xi = 1 if failure i occurs and Xi = 0 otherwise.
Our goal is to upper bound the probability Pr [

∑n
i=1Xi ≥ n/2].

(a) (2 pt.) Let’s first assume that the n failure events are independent and the probability
of each failure is at most 1/3. Formally, we have:

Assumption 1. Pr[Xi = 1] ≤ 1/3 for every i ∈ [n] and X1, . . . , Xn are independent.

Prove that under Assumption 1, for some constant C > 0 that does not depend on n,

Pr

[
n∑

i=1

Xi ≥ n/2

]
≤ e−Cn. (1)

Thus, the probability of a crash is exponentially small in n.

[HINT: Feel free to use (without proof) any of the Chernoff bounds in lecture note #5

(including Theorem 2 and Corollaries 5 and 6) and also the inequality eδ

(1+δ)1+δ ≤ e−δ2/3

for δ ∈ [0, 1]. ]

(b) (1 pt.) Now we decide that Assumption 1 is too unrealistic, since many of the failure
modes are known to be strongly correlated. Show that only assuming Pr[Xi = 1] ≤ 1/3
(and not the independence), the probability of crashing can be as large as Ω(1). In
particular, prove that for any n ≥ 1, there exist random variables X1, . . . , Xn that
satisfy: (1) Pr[Xi = 1] ≤ 1/3 for every i ∈ [n]; (2) Pr [

∑n
i=1Xi ≥ n/2] ≥ 1/3.

(c) (2 pt.) Let’s try the following relaxation of Assumption 1, which states that the prob-
ability for k different failures to occur simultaneously is exponentially small in k:

Assumption 2. For any S ⊆ [n], Pr [Xi = 1 for all i ∈ S] ≤ (1/3)|S|.

Show that Assumption 2 is strictly weaker than Assumption 1 by proving: (1) Assump-
tion 1 implies Assumption 2; (2) the implication on the other direction does not hold,
i.e., there exist some n and X1, . . . , Xn that satisfy Assumption 2 but not Assumption 1.

[HINT: For (2), there exists a counterexample for n = 2. ]

(d) (6 pt.) Prove that under Assumption 2, inequality (1) holds for some constant C > 0. In
your proof, you can appeal to the proof of the Chernoff bounds from lecture videos/notes
if you need to write it out verbatim at some point. For example, if you manage to upper
bound Pr [

∑n
i=1Xi ≥ n/2] by an expression involving the moment-generating function

of some random variable Y that is the sum of n independent Bernoulli random variables,
you can simply say that “the rest of the proof is exactly the proof of Theorem 2 from
Lecture #5”.

[HINT: Consider independent Bernoulli random variables Y1, . . . , Yn with Pr[Yi = 1] =
1/3 for each i ∈ [n]. For distinct indices i, j, ℓ ∈ [n], does E [XiXjXℓ] ≤ E [YiYjYℓ] hold?
Can you extend your proof of the inequality to the case with repeating indices? ]

[HINT: Let X =
∑n

i=1Xi and Y =
∑n

i=1 Yi. What can we say about E
[
Xk
]
and E

[
Y k
]

for integer k ≥ 0? Considering the identity ez =
∑+∞

k=0
zk

k! , what can we say about E
[
etX
]

and E
[
etY
]
for any t > 0? ]

(e) (0 pt.) [Optional: this won’t be graded.] Can you construct counterexamples for
Part 2b that satisfy pairwise independence but have a crashing probability of Ω(1/n)?
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Formally, prove that there exists C > 0 such that for any n ≥ 2, there exist X1, . . . , Xn

that satisfy: (1) Pr[Xi = 1] ≤ 1/3; (2) Xi and Xj are independent for distinct i, j ∈ [n];
(3) Pr [

∑n
i=1Xi ≥ n/2] ≥ C/n.

[NOTE: This shows that unlike Chebyshev’s inequality, Chernoff bounds do not hold if
we only assume pairwise independence. ]

[HINT: Recall pairwise independent hash functions if you have seen them before. You
can use the Bertrand-Chebyshev theorem, which states that for any integer n ≥ 1, there
exists a prime number p with n < p < 2n. ]

SOLUTION:

(a) Let X =
∑n

i=1Xi. Since E [Xi] = Pr[Xi = 1] ≤ 1/3 for each i ∈ [n], E [X] =∑n
i=1 E [Xi] ≤ n/3. Applying Corollary 6 from Lecture #5 with c = n/3 and δ = 1/2

gives

Pr

[
n∑

i=1

Xi ≥ n/2]

]
= Pr[X ≥ (1+ δ)c] ≤

(
eδ

(1 + δ)1+δ

)c

≤ exp(−δ2c/3) = exp(−n/36).

The third step applies eδ

(1+δ)1+δ ≤ e−δ2/3 since δ ∈ [0, 1]. Therefore, (1) holds for C =

1/36.

(b) Consider random variables X1, . . . , Xn with the following property: with probability
1/3, they all take value 1; and with the remaining probability 2/3, they all take value 0.
It is easy to check that

Pr[X1 = 1] = · · · = Pr[Xn = 1] = Pr
[ n∑

i=1

Xi ≥ n/2
]
= Pr[X1 = · · · = Xn = 1] = 1/3,

as desired.

(c) To show that Assumption 1 implies Assumption 2, we use the independence of Xi’s to
get Pr [Xi = 1 for all i ∈ S] =

∏
i∈S Pr[Xi = 1]. This product is at most (1/3)|S| because

every factor Pr[Xi = 1] is at most 1/3.

To show that Assumption 2 does not imply Assumption 1, we consider random variables
X1, . . . , Xn with the following property: with probability (1/3)n, they all take value 1;
and with the remaining probability 1− (1/3)n, they all take value 0. For any non-empty
S ⊆ [n], we have Pr[Xi = 1 for all i ∈ S] = (1/3)n ≤ (1/3)|S|, so Assumption 2 is
satisfied. However, when n ≥ 2, Pr[X1 = X2 = 1] = (1/3)n ̸= (1/3)2n = Pr[X1 =
1]Pr[X2 = 1], so X1 is not independent from X2, and thus Assumption 1 is not satisfied.

(d) Following the hint, we define independent Bernoulli random variables Y1, · · · , Yn with
Pr[Yi = 1] = 1/3. Define X =

∑n
i=1Xi and Y =

∑n
i=1 Yi. We will prove later that for

any t > 0, we have
E
[
etX
]
≤ E

[
etY
]
. (2)

Assuming that this is true, for every t > 0, applying Markov’s inequality to the non-
negative random variable etX , we have

Pr[X ≥ n/2] = Pr
[
etX ≥ etn/2

]
≤ E

[
etX
]
/etn/2 ≤ E

[
etY
]
/etn/2,
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which implies that Pr[X ≥ n/2] ≤ inft>0 E
[
etY
]
/etn/2. Our solution to Part (a),

together with the proof of Corollary 6 from Lecture #5, implicitly proved that the
infimum on the right-hand side is at most e−Cn for C = 1/36. Therefore, we have
Pr[X ≥ n/2] ≤ e−Cn as desired.

We now turn to proving inequality (2). Because etz can be expanded as
∑+∞

k=0(t
k/k!)zk

for any z ∈ R, by the linearity of expectation, we have E
[
etX
]
=
∑+∞

k=0(t
k/k!)E

[
Xk
]

and E
[
etY
]
=
∑+∞

k=0(t
k/k!)E

[
Y k
]
. It thus suffices to prove that for every k = 0, 1, · · · ,

we have E
[
Xk
]

≤ E
[
Y k
]
. Using the definition X =

∑n
i=1Xi, we have Xk =∑

σ

∏k
j=1Xσ(j), where the summation is over all nk functions σ : [k] → [n]. By

the linearity of expectation again, we have E
[
Xk
]
=
∑

σ E
[∏k

j=1Xσ(j)

]
. Similarly,

we have E
[
Y k
]

=
∑

σ E
[∏k

j=1 Yσ(j)

]
. It now suffices to prove that for every σ,

E
[∏k

j=1Xσ(j)

]
≤ E

[∏k
j=1 Yσ(j)

]
. Define S = {i ∈ [n] : ∃j ∈ [k], σ(j) = i} as the

image of σ. We have

E

 k∏
j=1

Xσ(j)

 = Pr[Xi = 1 for all i ∈ S]

≤ (1/3)|S| (by Assumption 2)

= Pr[Yi = 1 for all i ∈ S]

= E

 k∏
j=1

Yσ(j)

 ,

as desired.

(e) Let p be the minimum prime that is greater than n. Define random variables Z1, . . . , Zp

as follows: (1) pick a, b ∈ {0, 1, . . . , p − 1} independently and uniformly at random; (2)
set Zi = (a · i + b) mod p. We can verify that Z1, . . . , Zp defined above are pairwise
independent, since for any i ̸= j and c, d ∈ {0, 1, . . . , p− 1}, it holds that

Zi = c and Zj = d ⇐⇒ a = (c− d) · (i− j)−1 mod p and b = (c− a · i) mod p.

Here (i−j)−1 exists since p is a prime and (i−j) mod p ̸= 0. Thus, (Zi, Zj) is uniformly
distributed among {0, 1, . . . , p− 1}2 for i ̸= j, and thus Zi and Zj are independent.

Define X1, . . . , Xn such that Xi is the indicator of Zi < ⌊p/3⌋. It then follows that
X1, . . . , Xn are pairwise independent and Pr[Xi = 1] = Pr[Zi < ⌊p/3⌋] ≤ 1/3. On
the other hand, note that when we happen to choose a = 0 and b < ⌊p/3⌋, we have
Z1 = · · · = Zp = b < ⌊p/3⌋ and thus X1 + · · ·+Xn = n ≥ n/2. This indicates that

Pr[X1 + · · ·+Xn ≥ n/2] ≥ Pr[a = 0] · Pr[b < ⌊p/3⌋] = 1

p
· ⌊p/3⌋

p
>

1

2n
· 1
5
=

1

10n
.

The third step applies: (1) 1/p > 1/(2n), since the Bertrand-Chebyshev theorem guar-
antees p < 2n; (2) ⌊p/3⌋ ≥ p/5 for every prime number p ≥ 3, which can be easily
verified. Therefore, the lower bound holds with C = 1/10.
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3. (8 pt.) Processes and CPUs

Suppose that in a distributed system, we have N CPUs and P processes. Each process is
independently and uniformly allocated to a CPU. However, if multiple processes are allocated
to the same CPU, the CPU will choose one of them at random to complete; the remaining
processes allocated to that CPU will not be completed.

(a) (2 pt.) What is expected number of processes that will be completed?

(b) (6 pt.) Suppose that P ≥ N , and denote the total number of completed processes by
C. Use Poissonization to prove that Pr

[
C ≤ N

2

]
≤ e−Ω(N).

[Note: There may be ways to do this problem that don’t involve Poissonization, but
we want you to use it to get practice with it. That is, you should prove the statement
by analyzing the case when the number of processes is an appropriate Poisson random
variable. Don’t forget the de-Poissonization step!]

(c) (0 pt.) [Optional: this won’t be graded.] Let µ be your answer from part (a).
Under what conditions on P and N can you use Poissonization to show that Pr[C ≤
(1− δ)µ] ≤ e−Ωδ(N) for any δ > 0, where the Ωδ notation means that you are allowed to
have constants that depend on δ hidden inside the big-Omega.

SOLUTION:

a) Let Ci be the number of completed processes at CPU i, which is just 1 if CPU i
has any processes allocated to it and 0 otherwise. We have Pr[Ci = 0] = (N−1

N )P .
Therefore by linearity of expectation E [C] = N(1−(N−1

N )P ). How should you think
of this quantity? If P = N , then ((N − 1)/N)P = (1 − 1/N)N ≈ 1/e ≈ 0.37, in
which case E [C] ≈ 0.63N.. If P > N the expectation is larger than this, and if
P < N the expectation is smaller, but will be at least 0.63P since the function αP

is convex for α ∈ (0, 1).

b) The high-level intuition for this part is as follows: If, instead of exactly P processes,
the number of processes is drawn from a Poisson distribution, then the number of
processes allcoated to each of the N CPUs is independent. If The expectation of the
Poisson process is close to N , then the expected number of CPUs that have at least
one process assigned to it will be roughly the same as in the case where P = N , which
is > 0.6N . Because of independence in the Poisson case, we can apply a Chernoff
bound, which will give a probability that we end up with less than N/2 nonempty
CPUs to be inverse exponential in N , since we are talking about an expectation of
at least Θ(N) from an expectation of Θ(N). To “depoissonize”, we just need to note
that the probability we have fewer than N/2 CPUs with processes is monotonically
decreasing as the number of processes increases (adding extra processes can never
decrease the number of non-empty CPUs). So, if we pick the expectation of the
Poisson distribution such that the probability it is less than N is, say, at least 1/2,
then the probability of getting less than N/2 processes can be at most 1/(1/2) = 2
times larger in the case with exactly N processes, versus the Poissonized setting.
Below we make this a bit more formal.
If, instead of exactly P processes, the number of processes is drawn according to
a Poisson distribution of expectation Q, then the number of processes allocated to
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each of the N CPUs is independent, each distributed according to a Poisson random
variable with expectation Q/N . In this Poissonized setting, the event that the ith
CPU has no assigned processes is e−Q/N , namely the probability this Poisson random
variable is equal to 0, and this event is independent of whatever happens with the
other CPUs. Hence, in this Poissonized setting, the number of completed processes
can be modeled as a sum of N i.i.d. random coin tosses, each of which occurs with
probability 1− e−Q/N ..
Lets let Q = 0.9N , and hence the number of completed processes in this Poissonized
setting, X, corresponds to a sum of N i.i.d. coin flips, each of which is heads with
probability at least 1−e−0.9 > 0.59.. Since E[X] > 0.59N , the probability X ≤ N/2
is at most Pr[X ≤ (1 − 1/6)E[X]] ≤ e−E[X](1/6)2/2 = e−Ω(N), where we used the
Chernoff bound of Corollary 5.
Now, all that remains is to related this probability in the “Poissonized” setting back
to the original setting. To do this, note that the number of completed processes can
only increase as the number of processes increases. Hence the probability of failure
given N processes is at most the probability of failure in the Poissonized setting,
given that the number of processes is at most N , which is at most e−Ω(N)/Pr[Z ≤
N ], where Z is a Poisson random variable of expectation N . Pr[Z ≤ N ] is actually
1 minus an inverse exponential in N , but its good enough to bound this by 1/2
[which is trivially true since the variance is 0.9N , and hence we get a bound of
O(1/N2) ≪ 1/2 just from Chebyshev’s inequality].
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