1. (4 pt.) Prove that $\left(\mathbb{R}^{3}, \ell_{2}\right)$ cannot be embedded into $\left(\mathbb{R}^{2}, \ell_{2}\right)$ with bounded distortion. In other words, there are no functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and constants $\alpha, \beta>0$ such that the following inequality holds for all $x, y \in \mathbb{R}^{3}$:

$$
\beta\|x-y\|_{2} \leq\|f(x)-f(y)\|_{2} \leq \alpha \beta\|x-y\|_{2} .
$$

[HINT: Try a proof by contradiction. How should the grid $G_{n}:=\{(i, j, k): i, j, k \in$ $\{0,1, \ldots, n\}\}$ be embedded? Try to pin down the intuition that the embedding of the grid would need to have lots of points fairly close together-within a smallish circle-but each point should not be too close to any other point, and then derive a contradiction from the fact that there just isn't enough area to fit all those points without some being too close....]

SOLUTION: Suppose that there exists an embedding f such that

$$
\beta\|x-y\|_{2} \leq\|f(x)-f(y)\|_{2} \leq \alpha \beta\|x-y\|_{2}
$$

Note that for any distinct $x, y \in G_{n}$, we have

$$
1 \leq\|x-y\|_{2} \leq n \sqrt{3}
$$

and therefore we have

$$
\beta \leq\|f(x)-f(y)\|_{2} \leq \alpha \beta n \sqrt{3}
$$

This implies that we can draw a disc of radius $\frac{\beta}{2}$ around each $f(x)$ without any overlap. In addition, because for all $x \in G_{n}$ we have

$$
\|f((0,0,0))-f(x)\|_{2} \leq \alpha \beta n \sqrt{3}
$$

all these disks are contained in the disc of radius $\alpha \beta n \sqrt{3}+\frac{\beta}{2}$ centered at $f((0,0,0))$. This large disc has area

$$
\pi\left(\alpha \beta n \sqrt{3}+\frac{\beta}{2}\right)^{2}
$$

There are $(n+1)^{3}$ non-overlapping small discs, each with area $\pi(\beta / 2)^{2}$, contained in the large disc. Therefore, we must have

$$
(n+1)^{3} \pi(\beta / 2)^{2} \leq \pi\left(\alpha \beta n \sqrt{3}+\frac{\beta}{2}\right)^{2}
$$

However, since the left hand is $\Theta\left(n^{3}\right)$ and the right side is $\Theta\left(n^{2}\right)$, this does not hold for large n, and so such an embedding does not exist.
2. (4 pt .) We showed that Bourgain's embedding allows us to embed an arbitrary metric space (X, d) with $|X|=n$ into $\left(\mathbb{R}^{k}, \ell_{1}\right)$ with target dimension k being $O\left((\log n)^{2}\right)$ and distortion
being $O(\log n)$. Moreover, the embedding can be computed efficiently using a randomized algorithm. Prove that the exact same embedding computed by the randomized algorithm also achieves $O(\log n)$ distortion with high probability when the target metric is ℓ_{2}. [This actually holds for any ℓ_{p} metric for any $p \geq 1$, but this problem just asks you to prove it for $\left.\ell_{2}\right]$. We encourage you to emphasize only the differences from the proof in the lecture notes rather than copying the entire proof.
[HINT: Let $f: X \rightarrow \mathbb{R}^{k}$ denote the relevant embedding. For any two points $x, y \in X$, we showed that $\|f(x)-f(y)\|_{1} \leq k \cdot d(x, y)$. Can we say something similar about $\|f(x)-f(y)\|_{2}$?] [HINT: For any two points $a, b \in \mathbb{R}^{k}$ it holds that $\|a-b\|_{2} \geq \frac{1}{\sqrt{k}}\|a-b\|_{1}$. This is a special case of Hölder's inequality.]

SOLUTION: We showed in the lecture notes that

$$
\left|d\left(x, S_{i, j}\right)-d\left(y, S_{i, j}\right)\right| \leq d(x, y)
$$

Plugging this into the ℓ_{p} norm gives

$$
\begin{aligned}
\|f(x)-f(y)\|_{p} & =\left(\sum_{i, j}\left(d\left(x, S_{i, j}\right)-d\left(y, S_{i, j}\right)\right)^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{i, j}(d(x, y))^{p}\right)^{\frac{1}{p}} \\
& =k^{\frac{1}{p}} d(x, y)
\end{aligned}
$$

We now prove that with high probability,

$$
\|f(x)-f(y)\|_{p} \geq \frac{k^{\frac{1}{p}}}{b \cdot \log n} d(x, y)
$$

We construct the sets $S_{i, j}$ and choose c in the same way, so that

$$
\|f(x)-f(y)\|_{1} \geq \frac{k}{2^{6} \log n} d(x, y) / 3
$$

Then, we have

$$
\begin{aligned}
\|f(x)-f(y)\|_{p} & \geq k^{\frac{1}{p}-1}\|f(x)-f(y)\|_{1} \\
& \geq k^{\frac{1}{p}-1} \frac{k}{2^{6} \log n} d(x, y) / 3 \\
& =\frac{k^{\frac{1}{p}}}{3 \cdot 2^{6} \log n} d(x, y)
\end{aligned}
$$

which completes the proof.
3. (11 pt.) Johnson-Lindenstrauss with ± 1 entries: In the lecture notes and videos we showed that a matrix of standard Gaussians can be used to get a dimension reducing map
with very little distortion. However, a matrix of arbitrary real numbers can be cumbersome to store and compute with. In this problem you'll show that you can get essentially the same guarantees using random matrices with ± 1 entries. Throughout this problem, let A be an $m \times d$ matrix who's entries are independently set to +1 with probability $1 / 2$ and otherwise to -1 , and $z \in \mathrm{R}^{d}$ be an arbitrary unit vector. ${ }^{1}$
In this problem, you can use the statements from previous subparts even if you do not successfully prove them.
(a) (2 pt.) Show that $\mathbb{E}\left[\|A z\|_{2}^{2}\right]=m$.
(b) (2 pt.) For $Y \sim N(0,1)$, show that for any even $k \geq 0, \mathbb{E}\left[Y^{k}\right] \geq 1$, and for odd $k \geq 0$, $\mathbb{E}\left[Y^{k}\right]=0$.
[HINT: There are many solutions to this. Try to find a short one!]
(c) (2 pt.) Prove that for any independent X_{1}, \ldots, X_{n} and independent Y_{1}, \ldots, Y_{n}, if, for all integers $k \geq 0$ and $i=1, \ldots, n$,

$$
0 \leq \mathbb{E}\left[\left(X_{i}\right)^{k}\right] \leq \mathbb{E}\left[\left(Y_{i}\right)^{k}\right]
$$

then for all integers $p \geq 0$,

$$
\mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{p}\right] \leq \mathbb{E}\left[\left(\sum_{i=1}^{n} Y_{i}\right)^{p}\right]
$$

(d) (4 pt.) Let B be an $m \times d$ matrix who entries are independently drawn from $N(0,1)$. Prove that, for any $t \geq 0$ and unit vector z, if $\mathbb{E}\left[e^{t\|B z\|_{2}^{2}}\right]$ is finite ${ }^{2}$, then

$$
\mathbb{E}\left[e^{t\|A z\|_{2}^{2}}\right] \leq \mathbb{E}\left[e^{t\|B z\|_{2}^{2}}\right]
$$

[HINT: For any random variable $\left.X, \mathbb{E}\left[e^{t X}\right]=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathbb{E}\left[X^{k}\right]\right]$
(e) (1 pt.) Show that, for any $\epsilon \in(0,1]$,

$$
\operatorname{Pr}\left[\|A z\|_{2}^{2} \geq m(1+\epsilon)\right] \leq e^{-\Omega\left(m \epsilon^{2}\right)} .
$$

If your proof is similar to that of Theorem 1 in lecture notes 8 , we encourage you to emphasize only the differences from the proof in the lecture notes rather than copying the entire proof.
(f) ($\mathbf{0} \mathbf{~ p t .)}$ [Optional: this won't be graded.] Show that, for any $\epsilon \in(0,1]$,

$$
\operatorname{Pr}\left[\|A z\|_{2}^{2} \leq m(1-\epsilon)\right] \leq e^{-\Omega\left(m \epsilon^{2}\right)} .
$$

[HINT: We recommend you first show that for any independent and nonnegative random variables X_{1}, \ldots, X_{m}, defining $S=\sum_{i=1}^{m} X_{i}$, the probability $S \leq \mathbb{E}[S]-\Delta$ is at most $\exp \left(-\Omega\left(\Delta^{2} / \sum_{i=1}^{m} \mathbb{E}\left[X_{i}^{2}\right]\right)\right)$. To do so, use the inequality $e^{-v} \leq 1-v+v^{2} / 2$ which holds for any $v \geq 0$. Feel free to use the fact that for $Y \sim N(0,1), \mathbb{E}\left[Y^{4}\right]=3$.]

[^0]
SOLUTION:

(a) By linearity of expectation,

$$
\mathbb{E}\left[\|A z\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{i=1}^{m}\left((A z)_{i}\right)^{2}\right]=\sum_{i=1}^{m} \mathbb{E}\left[\left((A z)_{i}\right)^{2}\right]
$$

Since $(A z)_{i}$ for $i=1, \ldots, m$ all have the same distribution, it is sufficient for us to show that $\mathbb{E}\left[\left((A z)_{1}\right)^{2}\right]=1$. The distribution of $(A z)_{1}$ is just that of $\sigma \cdot z$ where $\sigma \in\{ \pm 1\}^{d}$ has every element chosen uniformly and independently from $\{ \pm 1\}$. We compute,

$$
\begin{aligned}
\mathbb{E}\left[\left((A z)_{1}\right)^{2}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{d} \sigma_{i} z_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{d} \mathbb{E}\left[\sigma_{j}^{2} z_{i}^{2}\right]+\sum_{i \neq j}^{d} \mathbb{E}\left[\sigma_{i} \sigma_{j} z_{i} z_{j}\right] \\
& =\sum_{i=1}^{d} z_{i}^{2}=1
\end{aligned}
$$

where $\mathbb{E}\left[\sigma_{i} \sigma_{j}\right]=\mathbb{E}\left[\sigma_{i}\right] \mathbb{E}\left[\sigma_{j}\right]=0$ is by independence of σ_{i}, σ_{j}.
(b) For odd k, since Y^{k} is symmetric, as long as $\mathbb{E}\left[Y^{k}\right]$ is finite, it must be zero. This is because, for $f(t)$ the pdf of Y, the integrals $\int_{0}^{\infty} f(t) t^{k} d t$ and $\int_{-\infty}^{0} f\left(t^{\prime}\right)\left(t^{\prime}\right)^{k} d t^{\prime}$ cancel out whenever $t^{\prime}=-t$. For a normal distribution, the tails decay proportional to $t^{k} \cdot e^{-t^{2} / 2}=$ $e^{-\Omega\left(t^{2}\right)}$, which is fast enough for those integrals to converge, and so $\mathbb{E}\left[Y^{k}\right]=0$.
Now for the even case. For $k=0$, for any random variable $Y, \mathbb{E}\left[Y^{0}\right]=1$. For $k=2$, since $N(0,1)$ has mean 0 and variance $1, \mathbb{E}\left[Y^{2}\right]=1$. For even $k \geq 2$, we apply Jensen's inequality,

$$
\mathbb{E}\left[Y^{k}\right]=\mathbb{E}\left[\left(Y^{2}\right)^{k / 2}\right] \geq \mathbb{E}\left[\left(Y^{2}\right)\right]^{k / 2}=1^{k / 2}=1
$$

Another approach is to use the fact (which we proved in lecture) that the moment generating function of a standard Gaussian is $M(t)=e^{\frac{1}{2} t^{2}}$. This means that

$$
\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathbb{E}\left[Y^{k}\right]=\mathbb{E}\left[e^{t Y}\right]=e^{\frac{1}{2} t^{2}}=\sum_{n=0}^{\infty} \frac{t^{2 n}}{2^{n} n!}
$$

where the last equality uses the Taylor series $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ substituting $x=t^{2} / 2$. Comparing terms in the leftmost and rightmost sums, we see that $\mathbb{E}\left[Y^{k}\right]=0$ if k is odd and $\mathbb{E}\left[Y^{k}\right]=\frac{k!}{2^{k / 2}(k / 2)!}=(k-1)(k-3) \cdots 3 \cdot 1 \geq 1$ when k is even.
(c) By linearity of expectation, it is sufficient to prove that

$$
\sum_{i_{1}, \ldots, i_{p}=1}^{n} \mathbb{E}\left[X_{i_{1}} \cdots X_{i_{p}}\right] \leq \sum_{i_{1}, \ldots, i_{p}=1}^{n} \mathbb{E}\left[Y_{i_{1}} \cdots Y_{i_{p}}\right]
$$

For any fixed setting of i_{1}, \ldots, i_{p}, using independence of X_{1}, \ldots, X_{n}, there are integers $k_{1}, \ldots, k_{n} \geq 0$ such that

$$
\mathbb{E}\left[X_{i_{1}} \cdots X_{i_{p}}\right]=\prod_{j=1}^{n} \mathbb{E}\left[X_{j}^{k_{j}}\right],
$$

namely, k_{j} counts the number of i_{1}, \ldots, i_{p} that are equal to j. The same decomposition holds for the Y variables. Using the assumptions of the problem, $\prod_{j=1}^{n} \mathbb{E}\left[X_{j}^{k_{j}}\right] \leq$ $\prod_{j=1}^{n} \mathbb{E}\left[Y_{j}^{k_{j}}\right]$, and so the desired inequality holds.
(d) We can decompose $\|A z\|_{2}^{2}=\sum_{i \in[m]}(A z)_{i}^{2}$. Each term of that sum is independent and identically distributed according to $\sigma \cdot z$ where $\sigma \in\{ \pm 1\}^{d}$ has every element chosen uniformly and independently from $\{ \pm 1\}$. Therefore,

$$
\mathbb{E}\left[e^{t\|A z\|_{2}^{2}}\right]=\mathbb{E}\left[e^{t(\sigma \cdot z)^{2}}\right]^{m}
$$

We expand that moment generating function using the Taylor series for e^{x} and linearity of expectation to obtain,

$$
\mathbb{E}\left[e^{t\|A z\|_{2}^{2}}\right]=\left(\sum_{p=0}^{\infty} \frac{t^{p} \cdot \mathbb{E}\left[(\sigma \cdot z)^{2 p}\right]}{p!}\right)^{m}
$$

The same decomposition holds for B, where $\alpha \sim N(0,1)^{d}$,

$$
\mathbb{E}\left[e^{t\|B z\|_{2}^{2}}\right]=\left(\sum_{p=0}^{\infty} \frac{t^{p} \cdot \mathbb{E}\left[(\alpha \cdot z)^{2 p}\right]}{p!}\right)^{m}
$$

In both equations, the value inside the $(\cdot)^{m}$ is nonnegative, so it is sufficient to prove that each element of the sum satisfies the desired inequality. That is, we wish to prove $\mathbb{E}\left[(\sigma \cdot z)^{2 p}\right] \leq \mathbb{E}\left[(\alpha \cdot z)^{2 p}\right]$ for integers $p \geq 0$. To do so, we apply part (c). For each $i \in[d]$, let $X_{i}=\sigma_{i} z_{i}$ and $Y_{i}=\alpha_{i} z_{i}$. Then, for any even k

$$
\mathbb{E}\left[X_{i}^{k}\right]=\mathbb{E}\left[\sigma_{i}^{k}\right] z_{i}^{k}=z_{i}^{k}
$$

By part (b), $\mathbb{E}\left[Y_{i}^{k}\right] \geq z_{i}^{k}$ for even k. For odd k both $\mathbb{E}\left[X_{i}^{k}\right]=\mathbb{E}\left[Y_{i}^{k}\right]=0$. The desired result follows from part (c).
(e) We bound

$$
\begin{array}{rlr}
\operatorname{Pr}\left[\|A z\|_{2}^{2} \geq m(1+\epsilon)\right] & \left.\leq \operatorname{Pr}\left[e^{t\|A z\|_{2}^{2}} \geq e^{t m(1+\epsilon)}\right]\right] \\
& \leq \frac{\mathbb{E}\left[e^{t\|A z\|_{2}^{2}}\right]}{e^{\operatorname{tm(1+\epsilon)}}} \quad \text { (Markov's inequality) } \\
& \leq \frac{\mathbb{E}\left[e^{t\|B z\|_{2}^{2}}\right]}{e^{\operatorname{tm(1+\epsilon)}} .} \quad \text { (part (d)) }
\end{array}
$$

We continue as we did in the lecture notes, setting $t=\epsilon / 4$.
(f) First, we prove the inequality in the hint. Let X_{1}, \ldots, X_{m} be independent nonnegative random variables and S their sum. For any $t \geq 0$,

$$
\begin{array}{rlr}
\mathbb{E}\left[e^{-t S}\right] & =\prod_{i \in[m]} \mathbb{E}\left[e^{-t X_{i}}\right] \\
& \leq \prod_{i \in[m]}\left(1-t \mathbb{E}\left[X_{i}\right]+\frac{t^{2}}{2} \mathbb{E}\left[X_{i}^{2}\right]\right) & \left(e^{-v} \leq 1-v+v^{2} / 2 \text { for } v \geq 0\right) \\
& \leq \prod_{i \in[m]} e^{\left(-t \mathbb{E}\left[X_{i}\right]+\frac{t^{2}}{2} \mathbb{E}\left[X_{i}^{2}\right]\right)} & \left(1+v \leq e^{v} \text { for all } v \in \mathbb{R}\right) \\
& =\exp \left(-t \mathbb{E}[S]+\frac{t^{2}}{2} \sum_{i \in[m]} \mathbb{E}\left[X_{i}^{2}\right]\right) . &
\end{array}
$$

Next, we apply Markov's inequality. For $t \geq 0$

$$
\begin{aligned}
\operatorname{Pr}[S \leq \mathbb{E}[S]-\Delta] & =\operatorname{Pr}\left[e^{-t S} \geq e^{-t(\mathbb{E}[S]-\Delta)}\right] \\
& \leq \frac{\mathbb{E}\left[e^{-t S}\right]}{e^{-t(\mathbb{E}[S]-\Delta)}} \\
& \leq \exp \left(-t \mathbb{E}[S]+\frac{t^{2}}{2} \sum_{i \in[m]} \mathbb{E}\left[X_{i}^{2}\right]+t(\mathbb{E}[S]-\Delta)\right) \\
& =\exp \left(\frac{t^{2}}{2} \sum_{i \in[m]} \mathbb{E}\left[X_{i}^{2}\right]-t \Delta\right)
\end{aligned}
$$

Setting $t=\frac{\Delta}{\sum_{i \in[m]} \mathbb{E}\left[X_{i}^{2}\right]}$ gives

$$
\operatorname{Pr}[S \leq \mathbb{E}[S]-\Delta] \leq \exp \left(-\frac{\Delta^{2}}{2 \sum_{i \in[m]} \mathbb{E}\left[X_{i}^{2}\right]}\right)
$$

Next, we will apply that inequality to prove the desired result. Let X_{1}, \ldots, X_{m} be the elements of $A z$, so that $\|A z\|_{2}^{2}=\sum_{i \in[m]} X_{i}^{2}$. In part (a), we proved that $\mathbb{E}\left[\|A z\|_{2}^{2}\right]=m$. Applying in the inequality we just proved,

$$
\operatorname{Pr}\left[\left[\|A z\|_{2}^{2}\right] \leq m-m \epsilon\right] \leq \exp \left(-\frac{\epsilon^{2} m^{2}}{2 \sum_{i \in[m]} \mathbb{E}\left[X_{i}^{4}\right]}\right)
$$

Each X_{i} is identically distributed, so it's enough to prove that $\mathbb{E}\left[X_{i}^{4}\right]=O(1)$. Let Y_{1}, \ldots, Y_{m} be the elements of $B z$, where B is defined as in part (d). In the lecture notes, we proved that Y_{i} is distributed as a normal with mean 0 and variance 1, which
means that $\mathbb{E}\left[Y_{i}^{4}\right]=3$. By the same argument made in part(d), $\mathbb{E}\left[X_{i}^{4}\right] \leq \mathbb{E}\left[Y_{i}^{4}\right]=3$. We conclude that

$$
\operatorname{Pr}\left[\left[\|A z\|_{2}^{2}\right] \leq m(1-\epsilon)\right] \leq \exp \left(-\frac{\epsilon^{2} m^{2}}{6 m}\right)=e^{-\frac{m \epsilon^{2}}{6}}
$$

[^0]: ${ }^{1}$ You may wonder why the proof from the lecture notes doesn't directly apply to ± 1 entries. This is because, when the entries are drawn from a normal distribution, we can use the rotational invariance of Gaussians to rotate z until it is a standard unit vector. That trick no longer applies if the entries are ± 1.
 ${ }^{2}$ For the purpose of your solutions, feel free to ignore this "is finite."

