CS265, Autumn 2023

Due: Friday 10/27 at 11:59pm on Gradescope

Please follow the homework policies on the course website.

1. (4 pt.) Prove that (\mathbb{R}^3, ℓ_2) cannot be embedded into (\mathbb{R}^2, ℓ_2) with bounded distortion. In other words, there are no functions $f : \mathbb{R}^3 \to \mathbb{R}^2$ and constants $\alpha, \beta > 0$ such that the following inequality holds for all $x, y \in \mathbb{R}^3$:

$$\beta \|x - y\|_2 \le \|f(x) - f(y)\|_2 \le \alpha \beta \|x - y\|_2.$$

[HINT: Try a proof by contradiction. How should the grid $G_n \coloneqq \{(i, j, k) : i, j, k \in \{0, 1, ..., n\}\}$ be embedded? Try to pin down the intuition that the embedding of the grid would need to have lots of points fairly close together—within a smallish circle—but each point should not be too close to any other point, and then derive a contradiction from the fact that there just isn't enough area to fit all those points without some being too close....]

SOLUTION:

2. (4 pt.) We showed that Bourgain's embedding allows us to embed an arbitrary metric space (X, d) with |X| = n into (\mathbb{R}^k, ℓ_1) with target dimension k being $O((\log n)^2)$ and distortion being $O(\log n)$. Moreover, the embedding can be computed efficiently using a randomized algorithm. Prove that the exact same embedding computed by the randomized algorithm also achieves $O(\log n)$ distortion with high probability when the target metric is ℓ_2 . [This actually holds for any ℓ_p metric for any $p \ge 1$, but this problem just asks you to prove it for ℓ_2]. We encourage you to emphasize only the differences from the proof in the lecture notes rather than copying the entire proof.

[HINT: Let $f : X \to \mathbb{R}^k$ denote the relevant embedding. For any two points $x, y \in X$, we showed that $||f(x) - f(y)||_1 \le k \cdot d(x, y)$. Can we say something similar about $||f(x) - f(y)||_2$?] **[HINT:** For any two points $a, b \in \mathbb{R}^k$ it holds that $||a - b||_2 \ge \frac{1}{\sqrt{k}} ||a - b||_1$. This is a special case of Hölder's inequality.]

SOLUTION:

3. (11 pt.) Johnson-Lindenstrauss with ± 1 entries: In the lecture notes and videos we showed that a matrix of standard Gaussians can be used to get a dimension reducing map with very little distortion. However, a matrix of arbitrary real numbers can be cumbersome to store and compute with. In this problem you'll show that you can get essentially the same guarantees using random matrices with ± 1 entries. Throughout this problem, let A be an

 $m \times d$ matrix who's entries are independently set to +1 with probability 1/2 and otherwise to -1, and $z \in \mathbb{R}^d$ be an arbitrary unit vector.¹

In this problem, you can use the statements from previous subparts even if you do not successfully prove them.

- (a) (2 pt.) Show that $\mathbb{E}[||Az||_2^2] = m$.
- (b) (2 pt.) For $Y \sim N(0,1)$, show that for any even $k \ge 0$, $\mathbb{E}[Y^k] \ge 1$, and for odd $k \ge 0$, $\mathbb{E}[Y^k] = 0$.

[HINT: There are many solutions to this. Try to find a short one!]

(c) (2 pt.) Prove that for any independent X_1, \ldots, X_n and independent Y_1, \ldots, Y_n , if, for all integers $k \ge 0$ and $i = 1, \ldots, n$,

$$0 \le \mathbb{E}[(X_i)^k] \le \mathbb{E}[(Y_i)^k]$$

then for all integers $p \ge 0$,

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{p}\right] \leq \mathbb{E}\left[\left(\sum_{i=1}^{n} Y_{i}\right)^{p}\right]$$

(d) (4 pt.) Let B be an $m \times d$ matrix who entries are independently drawn from N(0, 1). Prove that, for any $t \ge 0$ and unit vector z, if $\mathbb{E}[e^{t||Bz||_2^2}]$ is finite², then

$$\mathbb{E}[e^{t\|Az\|_2^2}] \le \mathbb{E}[e^{t\|Bz\|_2^2}]$$

[HINT: For any random variable X, $\mathbb{E}[e^{tX}] = \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbb{E}[X^k]$]

(e) (1 pt.) Show that, for any $\epsilon \in (0, 1]$,

$$\Pr[\|Az\|_2^2 \ge m(1+\epsilon)] \le e^{-\Omega(m\epsilon^2)}.$$

If your proof is similar to that of Theorem 1 in lecture notes 8, we encourage you to emphasize only the differences from the proof in the lecture notes rather than copying the entire proof.

(f) (0 pt.) [Optional: this won't be graded.] Show that, for any $\epsilon \in (0, 1]$,

$$\Pr[\|Az\|_2^2 \le m(1-\epsilon)] \le e^{-\Omega(m\epsilon^2)}.$$

[HINT: We recommend you first show that for any independent and nonnegative random variables X_1, \ldots, X_m , defining $S = \sum_{i=1}^m X_i$, the probability $S \leq \mathbb{E}[S] - \Delta$ is at most $\exp(-\Omega(\Delta^2 / \sum_{i=1}^m \mathbb{E}[X_i^2]))$. To do so, use the inequality $e^{-v} \leq 1 - v + v^2/2$ which holds for any $v \geq 0$. Feel free to use the fact that for $Y \sim N(0,1)$, $\mathbb{E}[Y^4] = 3$.]

¹You may wonder why the proof from the lecture notes doesn't directly apply to ± 1 entries. This is because, when the entries are drawn from a normal distribution, we can use the rotational invariance of Gaussians to rotate z until it is a standard unit vector. That trick no longer applies if the entries are ± 1 .

²For the purpose of your solutions, feel free to ignore this "is finite."

SOLUTION: