
Problem Set 4 CS265, Autumn 2023
Due: Friday 10/27 at 11:59pm on Gradescope

Please follow the homework policies on the course website.

1. (4 pt.) Prove that (R3, ℓ2) cannot be embedded into (R2, ℓ2) with bounded distortion. In
other words, there are no functions f : R3 → R2 and constants α, β > 0 such that the
following inequality holds for all x, y ∈ R3:

β∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ αβ∥x− y∥2.

[HINT: Try a proof by contradiction. How should the grid Gn := {(i, j, k) : i, j, k ∈
{0, 1, . . . , n}} be embedded? Try to pin down the intuition that the embedding of the grid
would need to have lots of points fairly close together—within a smallish circle—but each
point should not be too close to any other point, and then derive a contradiction from the fact
that there just isn’t enough area to fit all those points without some being too close....]

SOLUTION:

2. (4 pt.) We showed that Bourgain’s embedding allows us to embed an arbitrary metric space
(X, d) with |X| = n into (Rk, ℓ1) with target dimension k being O((log n)2) and distortion
being O(log n). Moreover, the embedding can be computed efficiently using a randomized
algorithm. Prove that the exact same embedding computed by the randomized algorithm
also achieves O(log n) distortion with high probability when the target metric is ℓ2. [This
actually holds for any ℓp metric for any p ≥ 1, but this problem just asks you to prove it for
ℓ2]. We encourage you to emphasize only the differences from the proof in the lecture notes
rather than copying the entire proof.
[HINT: Let f : X → Rk denote the relevant embedding. For any two points x, y ∈ X, we
showed that ∥f(x)−f(y)∥1 ≤ k ·d(x, y). Can we say something similar about ∥f(x)−f(y)∥2?]
[HINT: For any two points a, b ∈ Rk it holds that ∥a − b∥2 ≥ 1√

k
∥a − b∥1. This is a special

case of Hölder’s inequality.]

SOLUTION:

3. (11 pt.) Johnson-Lindenstrauss with ±1 entries: In the lecture notes and videos we
showed that a matrix of standard Gaussians can be used to get a dimension reducing map
with very little distortion. However, a matrix of arbitrary real numbers can be cumbersome
to store and compute with. In this problem you’ll show that you can get essentially the same
guarantees using random matrices with ±1 entries. Throughout this problem, let A be an
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m × d matrix who’s entries are independently set to +1 with probability 1/2 and otherwise
to −1, and z ∈ Rd be an arbitrary unit vector.1

In this problem, you can use the statements from previous subparts even if you do not
successfully prove them.

(a) (2 pt.) Show that E[∥Az∥22] = m.

(b) (2 pt.) For Y ∼ N(0, 1), show that for any even k ≥ 0, E[Y k] ≥ 1, and for odd k ≥ 0,
E[Y k] = 0.
[HINT: There are many solutions to this. Try to find a short one!]

(c) (2 pt.) Prove that for any independent X1, . . . , Xn and independent Y1, . . . , Yn, if, for
all integers k ≥ 0 and i = 1, . . . , n,

0 ≤ E[(Xi)
k] ≤ E[(Yi)k]

then for all integers p ≥ 0,

E

[(
n∑

i=1

Xi

)p]
≤ E

[(
n∑

i=1

Yi

)p]

(d) (4 pt.) Let B be an m × d matrix who entries are independently drawn from N(0, 1).
Prove that, for any t ≥ 0 and unit vector z, if E[et∥Bz∥22 ] is finite2, then

E[et∥Az∥22 ] ≤ E[et∥Bz∥22 ]

[HINT: For any random variable X, E[etX ] =
∑∞

k=0
tk

k!E[X
k]]

(e) (1 pt.) Show that, for any ϵ ∈ (0, 1],

Pr[∥Az∥22 ≥ m(1 + ϵ)] ≤ e−Ω(mϵ2).

If your proof is similar to that of Theorem 1 in lecture notes 8, we encourage you to
emphasize only the differences from the proof in the lecture notes rather than copying
the entire proof.

(f) (0 pt.) [Optional: this won’t be graded.] Show that, for any ϵ ∈ (0, 1],

Pr[∥Az∥22 ≤ m(1− ϵ)] ≤ e−Ω(mϵ2).

[HINT: We recommend you first show that for any independent and nonnegative ran-
dom variables X1, . . . , Xm, defining S =

∑m
i=1Xi, the probability S ≤ E[S] − ∆ is at

most exp(−Ω(∆2/
∑m

i=1 E[X2
i ])). To do so, use the inequality e−v ≤ 1− v + v2/2 which

holds for any v ≥ 0. Feel free to use the fact that for Y ∼ N(0, 1), E[Y 4] = 3.]

1You may wonder why the proof from the lecture notes doesn’t directly apply to ±1 entries. This is because, when
the entries are drawn from a normal distribution, we can use the rotational invariance of Gaussians to rotate z until
it is a standard unit vector. That trick no longer applies if the entries are ±1.

2For the purpose of your solutions, feel free to ignore this “is finite.”
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SOLUTION:
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