
Problem Set 6 Solutions CS265, Autumn 2023

Note: In this homework you may find the following inequality useful. When x ∈ (0, 1):

exp

(
− x

1− x

)
≤ 1− x ≤ exp(−x).

A nice special case is that if x ∈ (0, 1/2) then 1− x ≥ e−2x. Feel free to use these without proof!

1. (10 pt.) [Threshold for isolation]

Recall that Gn,p refers to a random graph with n vertices, where each of the
(
n
2

)
possible

edges is present independently with probability p.

(a) (2 pt.) Suppose that p = 1.01 lnn
n . Show that Gn,p has an isolated vertex with proba-

bility o(1).

(b) (4 pt.) Let X1, X2, ..., Xn be 0/1 random variables that are not necessarily independent,

and not necessarily identically distributed, and let X =
n∑

i=1

Xi. Prove that

E[X2] =
n∑

i=1

Pr[Xi = 1] · E[X | Xi = 1].

(c) (4 pt.) Suppose that p = 0.99 lnn
n . Show that Gn,p has an isolated vertex with proba-

bility 1− o(1).

[HINT: Consider using part (b) – it might make the math simpler.]

SOLUTION:

(a) Fix a single vertex in Gn,p. It is isolated iff none of the (n− 1) potential edges adjacent
to it exist in Gn,p. By independence of each such edge, the probability this vertex is
isolated is (

1− 1.01
lnn

n

)n−1

≤ exp(−1.01(n− 1)/n · lnn).

For large enough n, 1.01(n− 1)/n ≥ 1.005. In this regime, by union bound, the proba-
bility any vertex is isolated is at most

n · exp(−1.005 · lnn) = n · n−1.005 = n−0.005 = o(1).

(b) Using the distributive property and linearity of expectation, we can write,

E[X2] =
n∑

i=1

n∑
j=1

E[XiXj ].
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We simplify the right hand side of the desired expression:

n∑
i=1

Pr[Xi = 1] · E[X | Xi = 1] =

n∑
i=1

Pr[Xi = 1]

n∑
j=1

E[Xj | Xi = 1]

=

n∑
i=1

Pr[Xi = 1]

n∑
j=1

E[XjXi]

Pr[Xi = 1]

=
n∑

i=1

n∑
j=1

E[XiXj ] = E[X2].

(c) Let the vertices be labeled {1, 2, ..., n}, and let Xi be the indicator that vertex i is

isolated. Let X =
n∑

i=1

Xi. We want to show that Pr[X = 0] = o(1). Recall that

Pr[X = 0] ≤ Var[X]

(E[X])2
=

E[X2]

(E[X])2
− 1.

As we saw in part (a), Pr[Xi = 1] = (1− p)n−1, and so E[X] = n(1− p)n−1.

To compute the variance, we’ll use part (b). Conditioned on i being isolated, the ex-
pected total number of isolated vertices is 1 (for i) plus the expected number of isolated
vertices in the graph with i removed. That graph is just a Gn−1,p, so it follows that

E[X | Xi = 1] = 1 + (n− 1)(1− p)n−2.

Then by part (b),

E[X2] = n(1− p)n−1(1 + (n− 1)(1− p)n−2) = E[X](1 + (n− 1)(1− p)n−2).

It follows that

Pr[X = 0] ≤ 1 + (n− 1)(1− p)n−2

n(1− p)n−1
− 1

=
1

n(1− p)n−1
+

1− 1
n

1− p
− 1

≤ 1

n(1− p)n−1
+

p

1− p
.

Now, with our choice of p, we have p
1−p = O( lnn

n ) = o(1). Next,

1

n(1− p)n−1
≤ 1

n(1− p)n
≤ 1

n exp(− pn
1−p)

=
1

n
1−0.99 1

1−p

.

Since p → 0 as n → ∞, this is o(1). To be more concrete, once n ≥ 105 we have
p ≤ 0.001, and so 1 − 0.99

1−p ≥ 0.009. This means that for sufficiently large n, the above

expression is at most n−0.009 = o(1). Hence Pr[X = 0] = o(1) as desired.
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2. (6 pt.) [Echoing paths]
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Figure 1: An edge coloring of a graph with some echoing paths.

An edge coloring of an (undirected) graph G = (V,E) assigns exactly one color to each edge
of the graph. We say that a colored path in the graph is echoing if the path has an even
number of edges, and the second half of the path is colored identically to the first half of the
path (i.e. the sequence of colors in the second half of the path is the same sequence as in the
first half). For example, in Figure 1, the paths from v1 and v2, from v3 to v4, and from v5 to
v6 are all echoing paths. Edges are colored and labeled a, b, or c corresponding to their color.

Throughout this problem, by “path” we refer only to simple paths—i.e. paths that do not
re-use any edges.

(a) (4 pt.) Prove that for any graph whose maximum degree is d, there exists a coloring
using 10 ·d2 colors such that there are no echoing paths of length 4 (i.e. no echoing paths
consisting of 4 distinct edges, like the path from v5 to v6 in Figure 1).

[HINT: Lovasz Local Lemma!]

(b) (2 pt.) Given the setup in the previous part, give an algorithm that will find such a
coloring in expected time polynomial in the size of the graph, and justify the runtime.

(c) (0 pt.) [This problem is optional.] Prove that there is some constant C such that
for any graph whose maximum degree is d, there exists a coloring using C · d2 colors
such that there are no echoing paths (of any length).

SOLUTION:

(a) We color each of the edges of the graphs independently at random with one of the 10d2

colors (each color equally likely for each edge). We will show using the LLL that with
positive probability, this coloring has no symmetric paths of length 4.

For each path p of length 4, let Bp be the event that p is a symmetric path in our
coloring. Pr[Bp] =

1
(10d2)

= 1
100d4

, since this is the probability that the third edge is

the same as the first edge, and the fourth edge is the same as the first edge (using the
independence of the edge colors). If two paths p and p′ don’t share an edge then Bp
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and Bp′ they must be independent, since the coin flips that determine these events are
disjoint.

For a fixed edge e = (u, v), consider the number of paths p of length 4 that use this edge.
Any such path consists of some five vertices v1, v2, v3, v4, v5, where (vi, vi+1) is an edge
for each 1 ≤ i ≤ 4, and u = vj , v = vj+1 for some 1 ≤ j ≤ 4. For each choice of j, there
are at most d ways to extend the path (starting with just the one edge, e) to the left or
right, and we have 3 such extensions to make, so there are at most d3 such paths. As an
example, if j = 2, then there are at most d choices for v1, and at most d choices for v4,
and once v4 is fixed, there are at most d choices for v5. This gives at most d3 paths with
j = 2. With 4 choices for j, it follows that there are at most 4d3 paths that include e.

Then, the number of paths that have a common edge with a fixed path p is at most
16d3, since each such path must contain one of the four edges of p, and for each of those
edges there are at most 4d3 possible paths. Hence, each event Bp is independent from
all but at most other 16d3 events. Since

Pr[Bp] · 16d3 =
16d3

100d4
=

1

6.25d
< 1/4,

the conditions of LLL apply (Version 1 of Theorem 3 from Lecture 11), and so a coloring
that avoids all bad events exists.

(b) We can directly apply the Moser-Tardos re-randomization algorithm. In this case the
algorithm is as follows: The algorithm works by randomly assigning a random color to
each edge, and then while there exists a symmetric path of length 4, choose one and
randomly reassign colors to the edges in that path.

Initializing the colors takes time O(n2). We can naively iterate over each possible paths
of length 4 and check if it is symmetric in time O(n5), so each iteration of the loop takes
O(n5) time. The total number of bad events is also O(n5), since there are at most that
many paths of length 4, and so Corollary 3 in Lecture 12 tells us the expected number
of iterations needed is O(n5). Hence the overall expected runtime is O(n10), which is
polynomial in n.

(c) We proceed similarly to part (a), but instead we apply the Asymmetric LLL. Again we
let Bp be the event that a path p of even length is symmetric. By the same argument
as in part (a) if p has length 2k then Pr[Bp] =

1
(Cd2)k

= 1
Ckd2k

.

Our goal will be to assign a value rp for each path p such that the inequality for Theorem
5 in the lecture 11 notes is satisfied. To make things easier, we’ll set rp = rp′ whenever
p and p are paths of the same length. For ease, let rℓ be the value assigned to all paths
of length ℓ. We’ll show that rℓ =

1
(cd)ℓ

works for an appropriate choice of c which will

depend on C. Eventually we will set (c, C) = (4, 40) so these values can be kept in mind
throughout the proof.

As in part (a), Bp is mutually independent of all Bp′ such that p′ and p do not share
any edges. Given this, we bound the number of number of paths of length ℓ that are
not independent from a fixed Bp where p is a path of length 2k. By the same argument
as in part (a) that there are at most ℓdℓ−1 ≤ ℓdℓ paths of length ℓ that use a fixed edge.
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Hence, in total, the number of paths of length ℓ that share an edge with p is at most
2kℓdℓ. Hence, the inequality we want to show in order to apply Theorem 5 is

1

Ckd2k
≤ r2k ·

n∏
even ℓ=2

(1− rℓ)
2kℓdℓ

First we note that

r2k ·
n∏

even ℓ=2

(1− rℓ)
2kℓdℓ ≥ r2k ·

( ∞∏
ℓ=2

(1− rℓ)
ℓdℓ

)2k

Since we will eventually choose c = 4, we know that rℓ ≤ 1
2 for all ℓ ≥ 2. Hence

1− rℓ ≥ exp(−2rℓ), and so,

(1− rℓ)
ℓdℓ ≥ exp(−2rℓ · ℓdℓ) = exp

(
−2ℓ

cℓ

)
.

This gives us

r2k ·

( ∞∏
ℓ=2

(1− rℓ)
ℓdℓ

)2k

≥ r2k · exp

(
−2

∞∑
ℓ=2

ℓ

cℓ

)2k

.

We’re in good shape, since the term in the exponential will end up being a small con-
stant depending on c. Being precise, we have that

∑∞
ℓ=0

ℓ
cℓ

= c
(c−1)2

, which follows by

differentiating
∑∞

ℓ=0
1
cℓ

= 1
1− 1

c

and multiplying by −c. Hence, the above expression is

r2k · exp
(
− 2c

(c− 1)2

)2k

=
1

(cd)2k
exp

(
− 2c

(c− 1)2

)2k

.

This means that it suffices to show that

1

Ckd2k
≤ 1

(cd)2k
exp

(
− 2c

(c− 1)2

)2k

⇐⇒ 1

C
≤ 1

c2
exp

(
− 2c

(c− 1)2

)
.

This is easy to achieve by picking the right parameters. For instance our choice (c, C) =
(4, 40) works.

3. (0 pt.) [Tightness of the Lovasz Local Lemma]

This whole problem is optional and will not be graded.

One version of the LLL that we saw asserts that for any set of events A1, . . . , An, such that for
each i, Ai is mutually independent of all but at most d events, then as long as Pr[Ai] ≤ 1

e(d+1) ,
then there is a nonzero chance of all events being simultaneously avoided.

(a) Define a set of events over a probability space such that each event is mutually inde-
pendent of all but at most d other events, and Pr[Ai] ≤ 1/(d + 1) for all i, but the
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probability of simultaneously avoiding all events Ai is 0. This shows that the constant
e in the statement of the LLL cannot be replaced by 1.

(b) (Challenge!) For some constant c ∈ (1, e), prove that the constant e in the LLL cannot
be replaced by c.

SOLUTION:

(a) We pick a uniformly random element X from {1, 2, ..., d+ 1}. Let Ai be the event that
X = i. Clearly, Pr[Ai] = 1

d+1 . Furthermore, there are d + 1 total events, so each
event can only depend on at most d other events (and indeed they do). By design, we
cannot simultaneously avoid all of the events Ai, since X must be one of the elements
{1, 2, ..., d+ 1}. Hence, this set of events satisfies the desired properties.

(b) See this paper: https://page.mi.fu-berlin.de/szabo/PDF/k-s-SAT.pdf.
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