
Problem Set 7 Solution CS265, Autumn 2023

1. (9 pt.) Fundamental Theorem of Markov Chains: A Special Case

Let X0, X1, . . . be a Markov chain over n states (labeled 1, 2, . . . , n) with transition matrix
P ∈ Rn×n, i.e., for any t ≥ 0, Pr[Xt+1 = j|Xt = i] = Pij . In addition, we assume that Pij > 0
for all i, j ∈ [n], and define pmin := mini,j∈[n] Pij > 0. In this problem, we will prove part of
the fundamental theorem of Markov chains for this special case. In particular, we will show
that there exists a unique stationary distribution π such that for all i, j ∈ [n],

lim
t→+∞

Pr[Xt = j|X0 = i] = πj .

(a) (2 pt.) As a warmup, show that the assumption Pij > 0 for all i, j ∈ [n] implies that
the Markov chain is irreducible and aperiodic. Thus, the assumption that we made is
not weaker than the one in the original theorem.

(b) (2 pt.) Let a =
[
a1 a2 · · · an

]
be a row vector that satisfies

∑n
i=1 ai = 0. Prove

that ∥aP∥1 ≤ (1− npmin/2)∥a∥1.
[HINT: You can use the following fact: For vectors a, b ∈ Rn satisfying

∑n
i=1 ai = 0

and mini∈[n] bi ≥ ϵ > 0, |
∑n

i=1 aibi| ≤
∑n

i=1 |ai|bi −
ϵ
2

∑n
i=1 |ai|. ]

(c) (3 pt.) Prove that there exists an n-dimensional row vector π =
[
π1 π2 · · · πn

]
such that: (1) π = πP ; (2)

∑n
i=1 πi = 1.

[HINT: First prove the existence of a non-zero vector π satisfying π = πP , and then
show that the second condition can be satisfied by scaling π. For the first step, you may
use the following fact without proof: if λ is an eigenvalue of a square matrix A, λ is also
an eigenvalue of AT . Part 1b might be helpful for the second step. ]

(d) (2 pt.) Let v =
[
v1 v2 · · · vn

]
be a row vector that satisfies

∑n
i=1 vi = 1. Let π be

a vector chosen as in Part 1c. Prove that limt→+∞ vP t = π. Then, derive that for all
i, j ∈ [n],

lim
t→+∞

Pr[Xt = j|X0 = i] = πj .

[HINT: Apply Part 1b to (v − π), (v − π)P, (v − π)P 2, . . .. ]

(e) (0 pt.) [Optional: this won’t be graded.] Extend the proof to the general case,
where the Markov chain is irreducible and aperiodic but Pij > 0 might not hold.

SOLUTION:

(a) The assumption Pij > 0 implies that there is a positive probability of reaching state j
from state i for arbitrary i, j ∈ [n], so the Markov chain is irreducible. Moreover, if we
choose i = j, we have Pii > 0, i.e., if we start from state i, there is a positive probability
of staying at state i in the next step. This implies that the Markov chain is aperiodic.
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(b) Applying the hint to every column of P , for all j ∈ [n], we have |
∑n

i=1 aiPij | ≤∑n
i=1 |ai|Pij − pmin

2 ∥a∥1. Summing over j ∈ [n], we have

∥aP∥1 =
n∑

j=1

∣∣∣∣ n∑
i=1

aiPij

∣∣∣∣
≤

n∑
j=1

( n∑
i=1

|ai|Pij −
pmin

2
∥a∥1

)

=

( n∑
i=1

|ai|
( n∑

j=1

Pij

))
− npmin

2
∥a∥1

=

( n∑
i=1

|ai|
)
− npmin

2
∥a∥1 (because

∑n
j=1 Pij = 1)

= (1− npmin/2)∥a∥1.

(c) Let us use 1 to denote the n dimensional all-ones column vector
[
1 1 · · · 1

]T
. For

every i ∈ [n], the entries in the i-th row of P represent the probability mass function of
the conditional distribution of Xt+1 given Xt = i, so they add up to one:

∑n
j=1 Pij = 1.

This implies that P1 = 1, so λ = 1 is an eigenvalue of P , and thus also an eigenvalue of
P T . Therefore, there exists a non-zero row vector π̃ such that P T π̃T = π̃T , or π̃P = π̃.
We will show later that

∑n
i=1 π̃i ̸= 0, so we can define π = π̃/

∑n
i=1 π̃i which satisfies

both requirements of the problem.

We prove by contradiction that
∑n

i=1 π̃i ̸= 0. Assuming
∑n

i=1 π̃i = 0, part (b) gives us a
contradiction: ∥π̃∥1 = ∥π̃P∥1 ≤ (1− npmin/2)∥π̃∥1 < ∥π̃∥1. The last inequality is strict
because π̃ is not the zero vector.

(d) The assumption
∑n

i=1 vi = 1 implies that v1 = 1, where 1 was defined in the solution
to part (c). Similarly, we have π1 = 1, so (v − π)1 = 0. We have showed P1 = 1, so
for every t = 0, 1, . . ., we have (v − π)P t1 = (v − π)1 = 0. This means that all the
coordinates of (v − π)P t add up to zero. We can thus apply part (b) to (v − π)P t and
get

∥(v − π)P t+1∥1 = ∥((v − π)P t)P∥1 ≤ (1− npmin/2)∥(v − π)P t∥1. (1)

It is clear that 1 − npmin/2 < 1, and we also have 1 − npmin/2 = 1 − 1
2

∑n
j=1 pmin ≥

1 − 1
2

∑n
j=1 P1j = 1/2 ≥ 0. Therefore, 1 − npmin/2 ∈ [0, 1). By induction on t using

(1), we know ∥(v − π)P t∥1 ≤ (1− npmin/2)
t∥v − π∥1. Sending t to +∞, the right hand

side approaches 0, so we have limt→+∞ ∥(v − π)P t∥1 = 0. Since πP = π, we know
(v − π)P t = vP t − π and thus limt→+∞ ∥vP t − π∥1 = 0. Therefore, limt→+∞ vP t = π.

When the initial state is X0 = i, the probability mass function of the initial distribution
can be represented by the i-th basis vector ei. Since P is the transition matrix, the
probability Pr[Xt = j|X0 = i] equals to the j-th coordinate of eiP

t. Choosing v to
be ei, we have limt→+∞ eiP

t = π. Taking the j-th coordinate of both sides, we have
limt→+∞ Pr[Xt = j|X0 = i] = πj .
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2. (11 pt.) Let n > 2, and consider the Markov chain {Xt} defined on the states {0, 1, . . . , n}
consisting of a random walk with reflecting barriers at 0 and n:

0 1 2 3 4 n− 2 n− 1 n

1/2

1/2

1/2

1/2

1/2

1/2

1/2 1/2

1/2 1

1

1/2

· · ·

That is, {Xt} is defined by the following transition probabilities:

• For i ∈ {1, . . . , n− 1}, we have

Pr[Xt = i+ 1|Xt−1 = i] = Pr[Xt = i− 1|Xt−1 = i] =
1

2
.

• At 0 and n, we have reflecting barriers:

Pr[Xt = 1|Xt−1 = 0] = Pr[Xt = n− 1|Xt−1 = n] = 1.

(a) (2 pt.) Is this chain periodic or aperiodic? Is it irreducible? Justify your answers in
one sentence each.

(b) (5 pt.) Consider the “lazy” version of {Xt} that, at every timestep, flips a fair coin
and with probability 1/2 stays in its current state, and with probability 1/2 transitions
as prescribed above. Call this lazy version {X̃t}. Define a coupling for X̃t that ensures
that the two chains in your coupling “never cross without meeting.” That is, if you
are coupling {X̃t} and {Ỹt}, you should ensure that if X̃0 ≤ Ỹ0, then it will hold that
X̃t ≤ Ỹt for all t.

(c) (4 pt.) Show that {X̃t} has a unique stationary distribution, and that the mixing time
of {X̃t} is bounded by O(n2).

[HINT: To bound the mixing time, use the coupling you defined in part (b). ]

[HINT: Recall Lemma 6 from Class 13, which says that if Zt is a walk on {0, 1, 2, . . .}
with a reflecting barrier at 0 (so Pr[Zt = 1|Zt−1 = 0] = 1, and otherwise Zt = Zt−1 ± 1
with probability 1/2 each), then the expected amount of time before Zt = n, given that
Z0 ≤ n, is at most n2. ]

SOLUTION:

(a) The chain is periodic, since for example you can only get from 1 back to 1 by taking an
even number of steps. It is irreducible because you can get from any state to any other
state.

(b) There are a number of different couplings with the desired property. Here, we describe
one especially simple one. First, if X̃t = Ỹt, then both do the same thing according to
{X̃t}. Otherwise, flip a fair coin. If it is heads, let {X̃t} be lazy (e.g., not move), and
let {Ỹt} take a step according to {Xt}. If it is tails, do it the other way around, so {Ỹt}
is lazy and {X̃t} steps according to {Xt}. This way, the two chains never move at the
same time, so they can never “cross” each other until they meet, at which point they
are coupled forever.
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(c) First, {X̃t} has a unique stationary distribution because it is aperiodic (since it has a
self-loop) and irreducible (since you can get anywhere from anywhere else).

Now, consider the coupling from part (b). Let Ts,s′ be the time that these two chains
couple, starting from s and s′ respectively. Suppose WLOG that X̃0 = s < s′ = Ỹ0.
Then, by the “non-crossing” property in (b), the two chains will have coupled when
X̃t = n for the first time. Thus, Ts,s′ is at most the time for X̃t to reach n.

From the hint (with Zt ← X̃t), we recall from class that the expected amount of time
for X̃t to reach n is at most n2. By Markov’s inequality, the probability that X̃t does
not reach n by time 2en2 is at most 1/2e. Thus,

Pr[Ts,s′ > 2en2] ≤ 1/2e.

By Proposition 9 from the Class 15 Lecture notes,

∆(2en2) ≤ Pr[Ts,s′ > 2en2] ≤ 1/2e,

so by definition
τmix ≤ 2en2,

as desired.
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