1. (9 pt.) Fundamental Theorem of Markov Chains: A Special Case

Let X_0, X_1, \ldots be a Markov chain over n states (labeled $1, 2, \ldots, n$) with transition matrix $P \in \mathbb{R}^{n \times n}$, i.e., for any $t \ge 0$, $\Pr[X_{t+1} = j | X_t = i] = P_{ij}$. In addition, we assume that $P_{ij} > 0$ for all $i, j \in [n]$, and define $p_{\min} := \min_{i,j \in [n]} P_{ij} > 0$. In this problem, we will prove part of the fundamental theorem of Markov chains for this special case. In particular, we will show that there exists a unique stationary distribution π such that for all $i, j \in [n]$,

$$\lim_{t \to +\infty} \Pr[X_t = j | X_0 = i] = \pi_j.$$

- (a) (2 pt.) As a warmup, show that the assumption $P_{ij} > 0$ for all $i, j \in [n]$ implies that the Markov chain is irreducible and aperiodic. Thus, the assumption that we made is not weaker than the one in the original theorem.
- (b) (2 pt.) Let $a = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ be a row vector that satisfies $\sum_{i=1}^n a_i = 0$. Prove that $\|aP\|_1 \leq (1 np_{\min}/2)\|a\|_1$. [HINT: You can use the following fact: For vectors $a, b \in \mathbb{R}^n$ satisfying $\sum_{i=1}^n a_i = 0$ and $\min_{i \in [n]} b_i \geq \epsilon > 0$, $|\sum_{i=1}^n a_i b_i| \leq \sum_{i=1}^n |a_i| b_i - \frac{\epsilon}{2} \sum_{i=1}^n |a_i|$.]
- (c) (3 pt.) Prove that there exists an n-dimensional row vector π = [π₁ π₂ ··· π_n] such that: (1) π = πP; (2) ∑_{i=1}ⁿ π_i = 1.
 [HINT: First prove the existence of a non-zero vector π satisfying π = πP, and then show that the second condition can be satisfied by scaling π. For the first step, you may use the following fact without proof: if λ is an eigenvalue of a square matrix A, λ is also an eigenvalue of A^T. Part 1b might be helpful for the second step.]
- (d) (2 pt.) Let $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ be a row vector that satisfies $\sum_{i=1}^n v_i = 1$. Let π be a vector chosen as in Part 1c. Prove that $\lim_{t \to +\infty} vP^t = \pi$. Then, derive that for all $i, j \in [n]$,

$$\lim_{t \to +\infty} \Pr[X_t = j | X_0 = i] = \pi_j.$$

[**HINT:** Apply Part 1b to $(v - \pi), (v - \pi)P, (v - \pi)P^2, \dots$]

(e) (0 pt.) [Optional: this won't be graded.] Extend the proof to the general case, where the Markov chain is irreducible and aperiodic but $P_{ij} > 0$ might not hold.

SOLUTION:

(a) The assumption $P_{ij} > 0$ implies that there is a positive probability of reaching state j from state i for arbitrary $i, j \in [n]$, so the Markov chain is irreducible. Moreover, if we choose i = j, we have $P_{ii} > 0$, i.e., if we start from state i, there is a positive probability of staying at state i in the next step. This implies that the Markov chain is aperiodic.

(b) Applying the hint to every column of P, for all $j \in [n]$, we have $|\sum_{i=1}^{n} a_i P_{ij}| \leq \sum_{i=1}^{n} |a_i| P_{ij} - \frac{p_{\min}}{2} ||a||_1$. Summing over $j \in [n]$, we have

$$\begin{split} \|aP\|_{1} &= \sum_{j=1}^{n} \left| \sum_{i=1}^{n} a_{i}P_{ij} \right| \\ &\leq \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{i}|P_{ij} - \frac{p_{\min}}{2} \|a\|_{1} \right) \\ &= \left(\sum_{i=1}^{n} |a_{i}| \left(\sum_{j=1}^{n} P_{ij} \right) \right) - \frac{np_{\min}}{2} \|a\|_{1} \\ &= \left(\sum_{i=1}^{n} |a_{i}| \right) - \frac{np_{\min}}{2} \|a\|_{1} \qquad (\text{because } \sum_{j=1}^{n} P_{ij} = 1) \\ &= (1 - np_{\min}/2) \|a\|_{1}. \end{split}$$

(c) Let us use **1** to denote the *n* dimensional all-ones column vector $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$. For every $i \in [n]$, the entries in the *i*-th row of *P* represent the probability mass function of the conditional distribution of X_{t+1} given $X_t = i$, so they add up to one: $\sum_{j=1}^n P_{ij} = 1$. This implies that $P\mathbf{1} = \mathbf{1}$, so $\lambda = 1$ is an eigenvalue of *P*, and thus also an eigenvalue of P^T . Therefore, there exists a non-zero row vector $\tilde{\pi}$ such that $P^T \tilde{\pi}^T = \tilde{\pi}^T$, or $\tilde{\pi}P = \tilde{\pi}$. We will show later that $\sum_{i=1}^n \tilde{\pi}_i \neq 0$, so we can define $\pi = \tilde{\pi} / \sum_{i=1}^n \tilde{\pi}_i$ which satisfies both requirements of the problem.

We prove by contradiction that $\sum_{i=1}^{n} \tilde{\pi}_i \neq 0$. Assuming $\sum_{i=1}^{n} \tilde{\pi}_i = 0$, part (b) gives us a contradiction: $\|\tilde{\pi}\|_1 = \|\tilde{\pi}P\|_1 \leq (1 - np_{\min}/2)\|\tilde{\pi}\|_1 < \|\tilde{\pi}\|_1$. The last inequality is strict because $\tilde{\pi}$ is not the zero vector.

(d) The assumption $\sum_{i=1}^{n} v_i = 1$ implies that $v\mathbf{1} = 1$, where **1** was defined in the solution to part (c). Similarly, we have $\pi \mathbf{1} = 1$, so $(v - \pi)\mathbf{1} = 0$. We have showed $P\mathbf{1} = \mathbf{1}$, so for every $t = 0, 1, \ldots$, we have $(v - \pi)P^t\mathbf{1} = (v - \pi)\mathbf{1} = 0$. This means that all the coordinates of $(v - \pi)P^t$ add up to zero. We can thus apply part (b) to $(v - \pi)P^t$ and get

$$\|(v-\pi)P^{t+1}\|_1 = \|((v-\pi)P^t)P\|_1 \le (1-np_{\min}/2)\|(v-\pi)P^t\|_1.$$
(1)

It is clear that $1 - np_{\min}/2 < 1$, and we also have $1 - np_{\min}/2 = 1 - \frac{1}{2} \sum_{j=1}^{n} p_{\min} \ge 1 - \frac{1}{2} \sum_{j=1}^{n} P_{1j} = 1/2 \ge 0$. Therefore, $1 - np_{\min}/2 \in [0, 1)$. By induction on t using (1), we know $||(v - \pi)P^t||_1 \le (1 - np_{\min}/2)^t ||v - \pi||_1$. Sending t to $+\infty$, the right hand side approaches 0, so we have $\lim_{t \to +\infty} ||(v - \pi)P^t||_1 = 0$. Since $\pi P = \pi$, we know $(v - \pi)P^t = vP^t - \pi$ and thus $\lim_{t \to +\infty} ||vP^t - \pi||_1 = 0$. Therefore, $\lim_{t \to +\infty} vP^t = \pi$. When the initial state is $X_0 = i$, the probability mass function of the initial distribution can be represented by the *i*-th basis vector e_i . Since P is the transition matrix, the probability $\Pr[X_t = j|X_0 = i]$ equals to the *j*-th coordinate of e_iP^t . Choosing v to be e_i , we have $\lim_{t \to +\infty} e_iP^t = \pi$. Taking the *j*-th coordinate of both sides, we have $\lim_{t \to +\infty} \Pr[X_t = j|X_0 = i] = \pi_j$.

2. (11 pt.) Let n > 2, and consider the Markov chain $\{X_t\}$ defined on the states $\{0, 1, \ldots, n\}$ consisting of a random walk with reflecting barriers at 0 and n:

That is, $\{X_t\}$ is defined by the following transition probabilities:

• For $i \in \{1, ..., n-1\}$, we have

$$\Pr[X_t = i + 1 | X_{t-1} = i] = \Pr[X_t = i - 1 | X_{t-1} = i] = \frac{1}{2}.$$

• At 0 and n, we have reflecting barriers:

$$\Pr[X_t = 1 | X_{t-1} = 0] = \Pr[X_t = n - 1 | X_{t-1} = n] = 1.$$

- (a) (2 pt.) Is this chain periodic or aperiodic? Is it irreducible? Justify your answers in one sentence each.
- (b) (5 pt.) Consider the "lazy" version of $\{X_t\}$ that, at every timestep, flips a fair coin and with probability 1/2 stays in its current state, and with probability 1/2 transitions as prescribed above. Call this lazy version $\{\tilde{X}_t\}$. Define a coupling for \tilde{X}_t that ensures that the two chains in your coupling "never cross without meeting." That is, if you are coupling $\{\tilde{X}_t\}$ and $\{\tilde{Y}_t\}$, you should ensure that if $\tilde{X}_0 \leq \tilde{Y}_0$, then it will hold that $\tilde{X}_t \leq \tilde{Y}_t$ for all t.
- (c) (4 pt.) Show that {X
 _t} has a unique stationary distribution, and that the mixing time of {X
 _t} is bounded by O(n²).
 [HINT: To bound the mixing time, use the coupling you defined in part (b).]

[HINT: Recall Lemma 6 from Class 13, which says that if Z_t is a walk on $\{0, 1, 2, ...\}$ with a reflecting barrier at 0 (so $\Pr[Z_t = 1 | Z_{t-1} = 0] = 1$, and otherwise $Z_t = Z_{t-1} \pm 1$ with probability 1/2 each), then the expected amount of time before $Z_t = n$, given that $Z_0 \leq n$, is at most n^2 .

SOLUTION:

- (a) The chain is periodic, since for example you can only get from 1 back to 1 by taking an even number of steps. It is irreducible because you can get from any state to any other state.
- (b) There are a number of different couplings with the desired property. Here, we describe one especially simple one. First, if X_t = Y_t, then both do the same thing according to {X_t}. Otherwise, flip a fair coin. If it is heads, let {X_t} be lazy (e.g., not move), and let {Y_t} take a step according to {X_t}. If it is tails, do it the other way around, so {Y_t} is lazy and {X_t} steps according to {X_t}. This way, the two chains never move at the same time, so they can never "cross" each other until they meet, at which point they are coupled forever.

(c) First, $\{\tilde{X}_t\}$ has a unique stationary distribution because it is aperiodic (since it has a self-loop) and irreducible (since you can get anywhere from anywhere else).

Now, consider the coupling from part (b). Let $T_{s,s'}$ be the time that these two chains couple, starting from s and s' respectively. Suppose WLOG that $\tilde{X}_0 = s < s' = \tilde{Y}_0$. Then, by the "non-crossing" property in (b), the two chains will have coupled when $\tilde{X}_t = n$ for the first time. Thus, $T_{s,s'}$ is at most the time for \tilde{X}_t to reach n.

From the hint (with $Z_t \leftarrow \tilde{X}_t$), we recall from class that the expected amount of time for \tilde{X}_t to reach *n* is at most n^2 . By Markov's inequality, the probability that \tilde{X}_t does not reach *n* by time $2en^2$ is at most 1/2e. Thus,

$$\Pr[T_{s,s'} > 2en^2] \le 1/2e.$$

By Proposition 9 from the Class 15 Lecture notes,

$$\Delta(2en^2) \le \Pr[T_{s,s'} > 2en^2] \le 1/2e,$$

so by definition

$$au_{mix} \le 2en^2$$
,

as desired.