1. (9 pt.) Fundamental Theorem of Markov Chains: A Special Case

Let X_{0}, X_{1}, \ldots be a Markov chain over n states (labeled $1,2, \ldots, n$) with transition matrix $P \in \mathbb{R}^{n \times n}$, i.e., for any $t \geq 0, \operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right]=P_{i j}$. In addition, we assume that $P_{i j}>0$ for all $i, j \in[n]$, and define $p_{\text {min }}:=\min _{i, j \in[n]} P_{i j}>0$. In this problem, we will prove part of the fundamental theorem of Markov chains for this special case. In particular, we will show that there exists a unique stationary distribution π such that for all $i, j \in[n]$,

$$
\lim _{t \rightarrow+\infty} \operatorname{Pr}\left[X_{t}=j \mid X_{0}=i\right]=\pi_{j} .
$$

(a) (2 pt.) As a warmup, show that the assumption $P_{i j}>0$ for all $i, j \in[n]$ implies that the Markov chain is irreducible and aperiodic. Thus, the assumption that we made is not weaker than the one in the original theorem.
(b) (2 pt.) Let $a=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]$ be a row vector that satisfies $\sum_{i=1}^{n} a_{i}=0$. Prove that $\|a P\|_{1} \leq\left(1-n p_{\min } / 2\right)\|a\|_{1}$.
[HINT: You can use the following fact: For vectors $a, b \in \mathbb{R}^{n}$ satisfying $\sum_{i=1}^{n} a_{i}=0$ and $\left.\min _{i \in[n]} b_{i} \geq \epsilon>0,\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}\right| b_{i}-\frac{\epsilon}{2} \sum_{i=1}^{n}\left|a_{i}\right|.\right]$
(c) (3 pt.) Prove that there exists an n-dimensional row vector $\pi=\left[\begin{array}{llll}\pi_{1} & \pi_{2} & \cdots & \pi_{n}\end{array}\right]$ such that: (1) $\pi=\pi P ;(2) \sum_{i=1}^{n} \pi_{i}=1$.
[HINT: First prove the existence of a non-zero vector π satisfying $\pi=\pi P$, and then show that the second condition can be satisfied by scaling π. For the first step, you may use the following fact without proof: if λ is an eigenvalue of a square matrix A, λ is also an eigenvalue of A^{T}. Part 1 b might be helpful for the second step.]
(d) (2 pt.) Let $v=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$ be a row vector that satisfies $\sum_{i=1}^{n} v_{i}=1$. Let π be a vector chosen as in Part 1c. Prove that $\lim _{t \rightarrow+\infty} v P^{t}=\pi$. Then, derive that for all $i, j \in[n]$,

$$
\lim _{t \rightarrow+\infty} \operatorname{Pr}\left[X_{t}=j \mid X_{0}=i\right]=\pi_{j} .
$$

[HINT: Apply Part 16 to $(v-\pi),(v-\pi) P,(v-\pi) P^{2}, \ldots$]
(e) (0 pt.) [Optional: this won't be graded.] Extend the proof to the general case, where the Markov chain is irreducible and aperiodic but $P_{i j}>0$ might not hold.

SOLUTION:

(a) The assumption $P_{i j}>0$ implies that there is a positive probability of reaching state j from state i for arbitrary $i, j \in[n]$, so the Markov chain is irreducible. Moreover, if we choose $i=j$, we have $P_{i i}>0$, i.e., if we start from state i, there is a positive probability of staying at state i in the next step. This implies that the Markov chain is aperiodic.
(b) Applying the hint to every column of P, for all $j \in[n]$, we have $\left|\sum_{i=1}^{n} a_{i} P_{i j}\right| \leq$ $\sum_{i=1}^{n}\left|a_{i}\right| P_{i j}-\frac{p_{\text {min }}}{2}\|a\|_{1}$. Summing over $j \in[n]$, we have

$$
\begin{aligned}
\|a P\|_{1} & =\sum_{j=1}^{n}\left|\sum_{i=1}^{n} a_{i} P_{i j}\right| \\
& \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left|a_{i}\right| P_{i j}-\frac{p_{\min }}{2}\|a\|_{1}\right) \\
& =\left(\sum_{i=1}^{n}\left|a_{i}\right|\left(\sum_{j=1}^{n} P_{i j}\right)\right)-\frac{n p_{\min }}{2}\|a\|_{1} \\
& =\left(\sum_{i=1}^{n}\left|a_{i}\right|\right)-\frac{n p_{\min }}{2}\|a\|_{1} \\
& =\left(1-n p_{\min } / 2\right)\|a\|_{1} .
\end{aligned}
$$

(because $\sum_{j=1}^{n} P_{i j}=1$)
(c) Let us use $\mathbf{1}$ to denote the n dimensional all-ones column vector $\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]^{T}$. For every $i \in[n]$, the entries in the i-th row of P represent the probability mass function of the conditional distribution of X_{t+1} given $X_{t}=i$, so they add up to one: $\sum_{j=1}^{n} P_{i j}=1$. This implies that $P \mathbf{1}=\mathbf{1}$, so $\lambda=1$ is an eigenvalue of P, and thus also an eigenvalue of P^{T}. Therefore, there exists a non-zero row vector $\tilde{\pi}$ such that $P^{T} \tilde{\pi}^{T}=\tilde{\pi}^{T}$, or $\tilde{\pi} P=\tilde{\pi}$. We will show later that $\sum_{i=1}^{n} \tilde{\pi}_{i} \neq 0$, so we can define $\pi=\tilde{\pi} / \sum_{i=1}^{n} \tilde{\pi}_{i}$ which satisfies both requirements of the problem.
We prove by contradiction that $\sum_{i=1}^{n} \tilde{\pi}_{i} \neq 0$. Assuming $\sum_{i=1}^{n} \tilde{\pi}_{i}=0$, part (b) gives us a contradiction: $\|\tilde{\pi}\|_{1}=\|\tilde{\pi} P\|_{1} \leq\left(1-n p_{\min } / 2\right)\|\tilde{\pi}\|_{1}<\|\tilde{\pi}\|_{1}$. The last inequality is strict because $\tilde{\pi}$ is not the zero vector.
(d) The assumption $\sum_{i=1}^{n} v_{i}=1$ implies that $v \mathbf{1}=1$, where $\mathbf{1}$ was defined in the solution to part (c). Similarly, we have $\pi \mathbf{1}=1$, so $(v-\pi) \mathbf{1}=0$. We have showed $P \mathbf{1}=\mathbf{1}$, so for every $t=0,1, \ldots$, we have $(v-\pi) P^{t} \mathbf{1}=(v-\pi) \mathbf{1}=0$. This means that all the coordinates of $(v-\pi) P^{t}$ add up to zero. We can thus apply part (b) to $(v-\pi) P^{t}$ and get

$$
\begin{equation*}
\left\|(v-\pi) P^{t+1}\right\|_{1}=\left\|\left((v-\pi) P^{t}\right) P\right\|_{1} \leq\left(1-n p_{\min } / 2\right)\left\|(v-\pi) P^{t}\right\|_{1} . \tag{1}
\end{equation*}
$$

It is clear that $1-n p_{\min } / 2<1$, and we also have $1-n p_{\min } / 2=1-\frac{1}{2} \sum_{j=1}^{n} p_{\min } \geq$ $1-\frac{1}{2} \sum_{j=1}^{n} P_{1 j}=1 / 2 \geq 0$. Therefore, $1-n p_{\min } / 2 \in[0,1)$. By induction on t using (1), we know $\left\|(v-\pi) P^{t}\right\|_{1} \leq\left(1-n p_{\min } / 2\right)^{t}\|v-\pi\|_{1}$. Sending t to $+\infty$, the right hand side approaches 0 , so we have $\lim _{t \rightarrow+\infty}\left\|(v-\pi) P^{t}\right\|_{1}=0$. Since $\pi P=\pi$, we know $(v-\pi) P^{t}=v P^{t}-\pi$ and thus $\lim _{t \rightarrow+\infty}\left\|v P^{t}-\pi\right\|_{1}=0$. Therefore, $\lim _{t \rightarrow+\infty} v P^{t}=\pi$.
When the initial state is $X_{0}=i$, the probability mass function of the initial distribution can be represented by the i-th basis vector e_{i}. Since P is the transition matrix, the probability $\operatorname{Pr}\left[X_{t}=j \mid X_{0}=i\right]$ equals to the j-th coordinate of $e_{i} P^{t}$. Choosing v to be e_{i}, we have $\lim _{t \rightarrow+\infty} e_{i} P^{t}=\pi$. Taking the j-th coordinate of both sides, we have $\lim _{t \rightarrow+\infty} \operatorname{Pr}\left[X_{t}=j \mid X_{0}=i\right]=\pi_{j}$.
2. ($\mathbf{1 1} \mathbf{p t}$.) Let $n>2$, and consider the Markov chain $\left\{X_{t}\right\}$ defined on the states $\{0,1, \ldots, n\}$ consisting of a random walk with reflecting barriers at 0 and n :

That is, $\left\{X_{t}\right\}$ is defined by the following transition probabilities:

- For $i \in\{1, \ldots, n-1\}$, we have

$$
\operatorname{Pr}\left[X_{t}=i+1 \mid X_{t-1}=i\right]=\operatorname{Pr}\left[X_{t}=i-1 \mid X_{t-1}=i\right]=\frac{1}{2} .
$$

- At 0 and n, we have reflecting barriers:

$$
\operatorname{Pr}\left[X_{t}=1 \mid X_{t-1}=0\right]=\operatorname{Pr}\left[X_{t}=n-1 \mid X_{t-1}=n\right]=1
$$

(a) (2 pt.) Is this chain periodic or aperiodic? Is it irreducible? Justify your answers in one sentence each.
(b) (5 pt.) Consider the "lazy" version of $\left\{X_{t}\right\}$ that, at every timestep, flips a fair coin and with probability $1 / 2$ stays in its current state, and with probability $1 / 2$ transitions as prescribed above. Call this lazy version $\left\{\tilde{X}_{t}\right\}$. Define a coupling for \tilde{X}_{t} that ensures that the two chains in your coupling "never cross without meeting." That is, if you are coupling $\left\{\tilde{X}_{t}\right\}$ and $\left\{\tilde{Y}_{t}\right\}$, you should ensure that if $\tilde{X}_{0} \leq \tilde{Y}_{0}$, then it will hold that $\tilde{X}_{t} \leq \tilde{Y}_{t}$ for all t.
(c) (4 pt.) Show that $\left\{\tilde{X}_{t}\right\}$ has a unique stationary distribution, and that the mixing time of $\left\{\tilde{X}_{t}\right\}$ is bounded by $O\left(n^{2}\right)$.
[HINT: To bound the mixing time, use the coupling you defined in part (b).]
[HINT: Recall Lemma 6 from Class 13, which says that if Z_{t} is a walk on $\{0,1,2, \ldots\}$ with a reflecting barrier at 0 (so $\operatorname{Pr}\left[Z_{t}=1 \mid Z_{t-1}=0\right]=1$, and otherwise $Z_{t}=Z_{t-1} \pm 1$ with probability $1 / 2$ each), then the expected amount of time before $Z_{t}=n$, given that $Z_{0} \leq n$, is at most n^{2}.]

SOLUTION:

(a) The chain is periodic, since for example you can only get from 1 back to 1 by taking an even number of steps. It is irreducible because you can get from any state to any other state.
(b) There are a number of different couplings with the desired property. Here, we describe one especially simple one. First, if $\tilde{X}_{t}=\tilde{Y}_{t}$, then both do the same thing according to $\left\{\tilde{X}_{t}\right\}$. Otherwise, flip a fair coin. If it is heads, let $\left\{\tilde{X}_{t}\right\}$ be lazy (e.g., not move), and let $\left\{\tilde{Y}_{t}\right\}$ take a step according to $\left\{X_{t}\right\}$. If it is tails, do it the other way around, so $\left\{\tilde{Y}_{t}\right\}$ is lazy and $\left\{\tilde{X}_{t}\right\}$ steps according to $\left\{X_{t}\right\}$. This way, the two chains never move at the same time, so they can never "cross" each other until they meet, at which point they are coupled forever.
(c) First, $\left\{\tilde{X}_{t}\right\}$ has a unique stationary distribution because it is aperiodic (since it has a self-loop) and irreducible (since you can get anywhere from anywhere else).
Now, consider the coupling from part (b). Let $T_{s, s^{\prime}}$ be the time that these two chains couple, starting from s and s^{\prime} respectively. Suppose WLOG that $\tilde{X}_{0}=s<s^{\prime}=\tilde{Y}_{0}$. Then, by the "non-crossing" property in (b), the two chains will have coupled when $\tilde{X}_{t}=n$ for the first time. Thus, $T_{s, s^{\prime}}$ is at most the time for \tilde{X}_{t} to reach n.
From the hint (with $Z_{t} \leftarrow \tilde{X}_{t}$), we recall from class that the expected amount of time for \tilde{X}_{t} to reach n is at most n^{2}. By Markov's inequality, the probability that \tilde{X}_{t} does not reach n by time $2 e n^{2}$ is at most $1 / 2 e$. Thus,

$$
\operatorname{Pr}\left[T_{s, s^{\prime}}>2 e n^{2}\right] \leq 1 / 2 e .
$$

By Proposition 9 from the Class 15 Lecture notes,

$$
\Delta\left(2 e n^{2}\right) \leq \operatorname{Pr}\left[T_{s, s^{\prime}}>2 e n^{2}\right] \leq 1 / 2 e,
$$

so by definition

$$
\tau_{m i x} \leq 2 e n^{2}
$$

as desired.

