
Problem Set 8 Solution CS265, Fall 2023

1. (5 pt.) Sampling Without Replacement

Suppose there are n total balls, of which m are red. We sample k of the balls uniformly
without replacement.1 Let Z be the random variable denoting how many of the k balls are
red. In this problem, you will show that Z is concentrated around its mean.

(a) (1 pt.) Show that E[Z] = km
n .

(b) (4 pt.) When k ≥ 1, show that Pr[|Z − E[Z]| ≥ λ] ≤ 2e−λ2/(2k) for any λ > 0.

[HINT: Try applying the Azuma-Hoeffding tail bound to a Doob martingale. When
applying Azuma-Hoeffding to a martingale {Zt}, feel free to provide a short/intuitive
explanation for why |Zi − Zi−1| ≤ ci rather than a rigorous proof. ]

(c) [Optional: this won’t be graded.] When k is close to n, a tighter bound than that
from part (b) holds.

i. (0 pt.) When k = n, explain why Pr[Z = E[Z]] = 1.

ii. (0 pt.) When 1 ≤ k ≤ n− 1, show that Pr[|Z − E[Z]| ≥ λ] ≤ 2e−λ2/(2v) where v is
defined as

v :=
k∑

i=1

(
1− k − i

n− i

)2

.

iii. (0 pt.) Show that v ≤ O(k(n− k)/n). This shows that the bound from part (c), ii
is tighter than the bound from part (b) when k is close to n.

SOLUTION:

(a) Let Xi ∈ {0, 1} be the indicator variable for whether the ith ball is red. Since Z =∑k
i=1Xi, we can apply linearity of expectation to conclude

E[Z] =

k∑
i=1

E[Xi] = k · m
n

(b) For each t = 0, . . . , k, we define the Doob martingale,

Zt = E[Z | X1, . . . Xt].

This is a martingale with respect to {Xt}. Then, Z0 = E[Z] with probability 1 and
Zk = Z. We aim to apply the Azuma-Hoeffding equality to bound |Zk−Z0|. Intuitively,
revealing whether a single ball is red can only affect the number of final red balls by 1,
so |Zt − Zt−1| ≤ 1 for all t = 1, . . . , k. For a more careful derivation that accounts for
the correlations between whether each ball is red see the solution to part (c), ii.

With the bound |Zt − Zt−1| ≤ 1, the desired result follows from the Azuma-Hoeffding
inequality.

1Note that this only makes sense when k,m ≤ n.
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(c) i. When k = n, we sample all of the n balls. Since this is done without replacement,
we are guaranteed to select all m red balls.

ii. For each t = 0, . . . , k, we define the Doob martingale,

Zt = E[Z | X1, . . . Xt].

This is a martingale with respect to {Xt}. Then, Z0 = E[Z] with probability 1
and Zk = Z. We aim to apply the Azuma-Hoeffding inequality to bound |Zk −Z0|,
which requires upper bounding |Zt − Zt−1| for each t = 1, . . . , k.
Fix a realization forX1, . . . , Xt, and let R be the number of red balls already selected
(R =

∑t
j=1Xj). There are two possible realizations for Xt+1: If Xt+1 = 1, then

we will have selected a total of R + 1 balls in the first t+ 1 steps and there will be
k−R− 1 remaining red balls for steps t+2, . . . , k. Applying part (a) to bound the
expectation of Xt+2 + · · ·+Xk,

Zt+1 = E[Z | X1, . . . , Xt+1]

= (R+ 1) + E

 k∑
j=t+2

Xj

∣∣∣∣X1, . . . , Xt+1


= R+ 1 +

(k − t− 1)(m−R− 1)

n− t− 1
.

The other possible realization is that Xt+1 = 0. In this case, there will be k − r
remaining red balls beginning at time step t+2. Using similar logic to the first case,

Zt+1 = E[Z | X1, . . . , Xt+1]

= R+ E

 k∑
j=t+2

Xj

∣∣∣∣X1, . . . , Xt+1


= R+

(k − t− 1)(m−R)

n− t− 1
.

Since {Zt} is a martingale with respect to {Xt}, it must be the case that E[Zt+1 |
X0, . . . , Xt] = Zt, which means that Zt is between the minimum and maximum
possible values for Zt+1 conditioned on X0, . . . , Xt. Therefore,

|Zt+1 − Zt| ≤
(
R+ 1 +

(k − t− 1)(m−R− 1)

n− t− 1

)
−
(
R+

(k − t− 1)(m−R)

n− t− 1

)
= 1− k − t− 1

n− t− 1
.

The desired result follows from the Azuma-Hoeffding bound.
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iii. We rewrite v as

v =
k∑

i=1

(
1− k − i

n− i

)2

=

k∑
i=1

(
n− k

n− i

)2

= (n− k)2 ·
k∑

i=1

(
1

n− i

)2

= (n− k)2 ·
n−1∑

j=n−k

1

j2

For any integers a ≤ b,

b∑
j=a

1

j2
≤

∫ b

a−1
1/x2dx

=
1

a− 1
− 1

b
.

We apply this to our bound for v,

v = (n− k)2 ·
n−1∑

j=n−k

1

j2

≤ (n− k)2 ·

 1

(n− k)2
+

n∑
j=n−k+1

1

j2


≤ (n− k)2 ·

(
1

(n− k)2
+

1

n− k
− 1

n

)
= 1 + (n− k)2 ·

(
k

(n− k)n

)
= 1 +

k(n− k)

n
= O

(
k(n− k)

n

)
.

2. (11 pt.) Reaching Consensus

This question considers a simple and fairly natural model of the dynamic of how opinions
shift over time in a group.

Suppose there is an undirected graph G = (V,E) whose vertices represent the group members
and a pair of members are friends if and only if they are connected by an edge. For simplicity,
we assume that G contains none of the following: 1) self-loops, 2) multiple edges connecting
the same pair of vertices, or 3) isolated vertices, i.e., vertices with no edge on them. Let S be
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the set of possible “opinions” on some topic, and lets suppose that each person has one and
only one opinion on the topic at a time. (For concreteness, think of S = {A,B,C, ...}. ) We
can represent the opinions of the group members by a mapping σ : V → S where the group
member corresponding to vertex v has opinion σ(v).

The opinions σ of the group members evolve due to discussions between friends. We model
the evolution of σ by the following time-homogeneous Markov chain: starting from the initial
opinion σ0, σ changes from σt−1 to σt at step t as follows. Independently for every vertex v,
we flip a fair coin. If the outcome is “heads”, σt(v) remains the same as σt−1(v); otherwise,
σt(v) becomes σt−1(v

′) for a uniformly random neighbor v′ of v. In short, every group member
keeps their own opinion with probability 1/2, and takes one of their friends’ opinion with the
remaining 1/2 probability.

In this problem, we will determine the likelihood that the group members reach a certain
consensus, given their initial opinions.

(a) (1 pt.) If G is disconnected and |S| > 1, show that there exist initial opinions σ0 of the
members for which consensus is never reached.

(b) (3 pt.) If G is connected, show that consensus is eventually reached almost surely. That
is, show that as the number of steps goes to infinity, the probability that consensus has
been reached approaches 1.

(c) (2 pt.) Let Xt be the number of group members who have some opinion, say A ∈ S
after step t. Give an example where (Xt)t≥0 is not a martingale with respect to (σt)t≥0.
The example should be one specific tuple (G,S, σ0).

(d) (3 pt.) Let Yt be the sum of the degrees of the vertices v corresponding to the group
members with opinion A after step t. Prove that (Yt)t≥0 is a martingale with respect to
(σt)t≥0.

(e) (2 pt.) Assume that G is connected. What is the probability that all members of the
group end up with opinion A (ie after some time, everyone has opinion, A ∈ S, for the
rest of time)? Express your answer in terms of G and the initial opinion σ0 of the group
members.

[HINT: Try applying the martingale stopping theorem to the martingale (Yt)t≥0. ]

SOLUTION:

(a) Let A, B denote two different opinions in S. If the group members in one connected
component of G all agree on A initially, and the group members in another component
all agree on B initially, there is no way to reach overall consensus.

(b) Suppose G is connected, and suppose that some vertex has opinion A. Then, for each
vertex that has opinion A or has a neighbor with opinion A, there is at least a 1/2n
probability they will have opinion A next round. Therefore there is at least a (1/2n)n

chance that all vertices that have opinion A keep opinion A and all vertices that have a
neighbor with opinion A adopts opinion A. If this happens n times in a row, then the
entire graph will have opinion A, since the longest path between any two nodes is at
most n. Therefore, with probability at least p = (1/2n)n

2
> 0, the entire graph will
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have the same opinion after n timesteps. Hence the probability that consensus does not
occur in kn timesteps is at most (1 − p)k, since we can split it up into k blocks of n
timesteps, and we reach consensus in each block with probability p. This goes to 0 as
k → ∞, so consensus is reached almost surely.

(c) Suppose the graph of opinions at time 0 is A−B−A. Then, each vertex switches opinion
with probability exactly 1/2, so E[X1|σ0] = 3/2, but X0 = 2.

(d) It is clear that Yt is determined by σt and is finite, so only the third condition remains
to be checked. Let dv denote the degree of vertex v, atv denote the number of neighbors
of v with opinion A at time t, and At denote the set of vertices with opinion A. Then,
we have

Yt :=
∑
v∈At

dv =
∑
v

atv.

The second inequality follows since the left side counts all outgoing edges from vertices
with opinion A and the right side counts all incoming edges to vertices with opinion A.
Then, since atv is determined by σt, we have

E[Yt+1|σ0, ..., σt] =
∑
v

dvP (v ∈ At+1|σt)

=
∑
v∈At

dvP (v ∈ At+1|σt) +
∑
v/∈At

dvP (v ∈ At+1|σt)

=
∑
v∈At

dv(
1

2
+

atv
2dv

) +
∑
v/∈At

dv
atv
2dv

=
∑
v∈At

dv
2

+
∑
v

atv
2

=Yt.

(e) Consider the stopping time T = min{t : Yt = 0∨Yt =
∑
v
dv}. This is the first time either

nobody has opinion A or everybody has opinion A. Note that once Yt = 0 or Yt =
∑
v
dv,

it will not change, and the event of reaching consensus on answer A is the same as the
event YT =

∑
v
dv. From part (b), we know that T < ∞ almost surely, and so YT = 0 or

YT =
∑
v
dv almost surely. So,

E[YT ] = P (YT =
∑
v

dv)
∑
v

dv.

By the stopping theorem,

E[YT ] = E[Y0] =
∑
v∈A0

dv.

Therefore,

P (YT =
∑
v

dv) =

∑
v∈A0

dv∑
v
dv

.
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