1. (5 pt.) Sampling Without Replacement

Suppose there are n total balls, of which m are red. We sample k of the balls uniformly without replacement. ${ }^{1}$ Let Z be the random variable denoting how many of the k balls are red. In this problem, you will show that Z is concentrated around its mean.
(a) (1 pt.) Show that $\mathbb{E}[Z]=\frac{k m}{n}$.
(b) (4 pt.) When $k \geq 1$, show that $\operatorname{Pr}[|Z-\mathbb{E}[Z]| \geq \lambda] \leq 2 e^{-\lambda^{2} /(2 k)}$ for any $\lambda>0$.
[HINT: Try applying the Azuma-Hoeffding tail bound to a Doob martingale. When applying Azuma-Hoeffding to a martingale $\left\{Z_{t}\right\}$, feel free to provide a short/intuitive explanation for why $\left|Z_{i}-Z_{i-1}\right| \leq c_{i}$ rather than a rigorous proof.]
(c) [Optional: this won't be graded.] When k is close to n, a tighter bound than that from part (b) holds.
i. (0 pt.) When $k=n$, explain why $\operatorname{Pr}[Z=\mathbb{E}[Z]]=1$.
ii. (0 pt.) When $1 \leq k \leq n-1$, show that $\operatorname{Pr}[|Z-\mathbb{E}[Z]| \geq \lambda] \leq 2 e^{-\lambda^{2} /(2 v)}$ where v is defined as

$$
v:=\sum_{i=1}^{k}\left(1-\frac{k-i}{n-i}\right)^{2} .
$$

iii. (0 pt.) Show that $v \leq O(k(n-k) / n)$. This shows that the bound from part (c), ii is tighter than the bound from part (b) when k is close to n.

SOLUTION:

(a) Let $X_{i} \in\{0,1\}$ be the indicator variable for whether the $i^{\text {th }}$ ball is red. Since $Z=$ $\sum_{i=1}^{k} X_{i}$, we can apply linearity of expectation to conclude

$$
\mathbb{E}[Z]=\sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right]=k \cdot \frac{m}{n}
$$

(b) For each $t=0, \ldots, k$, we define the Doob martingale,

$$
Z_{t}=\mathbb{E}\left[Z \mid X_{1}, \ldots X_{t}\right] .
$$

This is a martingale with respect to $\left\{X_{t}\right\}$. Then, $Z_{0}=\mathbb{E}[Z]$ with probability 1 and $Z_{k}=Z$. We aim to apply the Azuma-Hoeffding equality to bound $\left|Z_{k}-Z_{0}\right|$. Intuitively, revealing whether a single ball is red can only affect the number of final red balls by 1 , so $\left|Z_{t}-Z_{t-1}\right| \leq 1$ for all $t=1, \ldots, k$. For a more careful derivation that accounts for the correlations between whether each ball is red see the solution to part (c), ii.
With the bound $\left|Z_{t}-Z_{t-1}\right| \leq 1$, the desired result follows from the Azuma-Hoeffding inequality.

[^0](c) i. When $k=n$, we sample all of the n balls. Since this is done without replacement, we are guaranteed to select all m red balls.
ii. For each $t=0, \ldots, k$, we define the Doob martingale,
$$
Z_{t}=\mathbb{E}\left[Z \mid X_{1}, \ldots X_{t}\right] .
$$

This is a martingale with respect to $\left\{X_{t}\right\}$. Then, $Z_{0}=\mathbb{E}[Z]$ with probability 1 and $Z_{k}=Z$. We aim to apply the Azuma-Hoeffding inequality to bound $\left|Z_{k}-Z_{0}\right|$, which requires upper bounding $\left|Z_{t}-Z_{t-1}\right|$ for each $t=1, \ldots, k$.
Fix a realization for X_{1}, \ldots, X_{t}, and let R be the number of red balls already selected ($R=\sum_{j=1}^{t} X_{j}$). There are two possible realizations for X_{t+1} : If $X_{t+1}=1$, then we will have selected a total of $R+1$ balls in the first $t+1$ steps and there will be $k-R-1$ remaining red balls for steps $t+2, \ldots, k$. Applying part (a) to bound the expectation of $X_{t+2}+\cdots+X_{k}$,

$$
\begin{aligned}
Z_{t+1} & =\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{t+1}\right] \\
& =(R+1)+\mathbb{E}\left[\sum_{j=t+2}^{k} X_{j} \mid X_{1}, \ldots, X_{t+1}\right] \\
& =R+1+\frac{(k-t-1)(m-R-1)}{n-t-1} .
\end{aligned}
$$

The other possible realization is that $X_{t+1}=0$. In this case, there will be $k-r$ remaining red balls beginning at time step $t+2$. Using similar logic to the first case,

$$
\begin{aligned}
Z_{t+1} & =\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{t+1}\right] \\
& =R+\mathbb{E}\left[\sum_{j=t+2}^{k} X_{j} \mid X_{1}, \ldots, X_{t+1}\right] \\
& =R+\frac{(k-t-1)(m-R)}{n-t-1} .
\end{aligned}
$$

Since $\left\{Z_{t}\right\}$ is a martingale with respect to $\left\{X_{t}\right\}$, it must be the case that $\mathbb{E}\left[Z_{t+1} \mid\right.$ $\left.X_{0}, \ldots, X_{t}\right]=Z_{t}$, which means that Z_{t} is between the minimum and maximum possible values for Z_{t+1} conditioned on X_{0}, \ldots, X_{t}. Therefore,

$$
\begin{aligned}
\left|Z_{t+1}-Z_{t}\right| & \leq\left(R+1+\frac{(k-t-1)(m-R-1)}{n-t-1}\right)-\left(R+\frac{(k-t-1)(m-R)}{n-t-1}\right) \\
& =1-\frac{k-t-1}{n-t-1} .
\end{aligned}
$$

The desired result follows from the Azuma-Hoeffding bound.
iii. We rewrite v as

$$
\begin{aligned}
v & =\sum_{i=1}^{k}\left(1-\frac{k-i}{n-i}\right)^{2} \\
& =\sum_{i=1}^{k}\left(\frac{n-k}{n-i}\right)^{2} \\
& =(n-k)^{2} \cdot \sum_{i=1}^{k}\left(\frac{1}{n-i}\right)^{2} \\
& =(n-k)^{2} \cdot \sum_{j=n-k}^{n-1} \frac{1}{j^{2}}
\end{aligned}
$$

For any integers $a \leq b$,

$$
\begin{aligned}
\sum_{j=a}^{b} \frac{1}{j^{2}} & \leq \int_{a-1}^{b} 1 / x^{2} d x \\
& =\frac{1}{a-1}-\frac{1}{b}
\end{aligned}
$$

We apply this to our bound for v,

$$
\begin{aligned}
v & =(n-k)^{2} \cdot \sum_{j=n-k}^{n-1} \frac{1}{j^{2}} \\
& \leq(n-k)^{2} \cdot\left(\frac{1}{(n-k)^{2}}+\sum_{j=n-k+1}^{n} \frac{1}{j^{2}}\right) \\
& \leq(n-k)^{2} \cdot\left(\frac{1}{(n-k)^{2}}+\frac{1}{n-k}-\frac{1}{n}\right) \\
& =1+(n-k)^{2} \cdot\left(\frac{k}{(n-k) n}\right) \\
& =1+\frac{k(n-k)}{n}=O\left(\frac{k(n-k)}{n}\right) .
\end{aligned}
$$

2. (11 pt.) Reaching Consensus

This question considers a simple and fairly natural model of the dynamic of how opinions shift over time in a group.
Suppose there is an undirected graph $G=(V, E)$ whose vertices represent the group members and a pair of members are friends if and only if they are connected by an edge. For simplicity, we assume that G contains none of the following: 1) self-loops, 2) multiple edges connecting the same pair of vertices, or 3) isolated vertices, i.e., vertices with no edge on them. Let S be
the set of possible "opinions" on some topic, and lets suppose that each person has one and only one opinion on the topic at a time. (For concreteness, think of $S=\{A, B, C, \ldots\}$.) We can represent the opinions of the group members by a mapping $\sigma: V \rightarrow S$ where the group member corresponding to vertex v has opinion $\sigma(v)$.
The opinions σ of the group members evolve due to discussions between friends. We model the evolution of σ by the following time-homogeneous Markov chain: starting from the initial opinion σ_{0}, σ changes from σ_{t-1} to σ_{t} at step t as follows. Independently for every vertex v, we flip a fair coin. If the outcome is "heads", $\sigma_{t}(v)$ remains the same as $\sigma_{t-1}(v)$; otherwise, $\sigma_{t}(v)$ becomes $\sigma_{t-1}\left(v^{\prime}\right)$ for a uniformly random neighbor v^{\prime} of v. In short, every group member keeps their own opinion with probability $1 / 2$, and takes one of their friends' opinion with the remaining $1 / 2$ probability.
In this problem, we will determine the likelihood that the group members reach a certain consensus, given their initial opinions.
(a) (1 pt.) If G is disconnected and $|S|>1$, show that there exist initial opinions σ_{0} of the members for which consensus is never reached.
(b) ($\mathbf{3} \mathbf{~ p t}$.) If G is connected, show that consensus is eventually reached almost surely. That is, show that as the number of steps goes to infinity, the probability that consensus has been reached approaches 1 .
(c) ($2 \mathbf{p t}$.$) Let X_{t}$ be the number of group members who have some opinion, say $A \in S$ after step t. Give an example where $\left(X_{t}\right)_{t \geq 0}$ is not a martingale with respect to $\left(\sigma_{t}\right)_{t \geq 0}$. The example should be one specific tuple (G, S, σ_{0}).
(d) ($\mathbf{3} \mathbf{~ p t .) ~ L e t ~} Y_{t}$ be the sum of the degrees of the vertices v corresponding to the group members with opinion A after step t. Prove that $\left(Y_{t}\right)_{t>0}$ is a martingale with respect to $\left(\sigma_{t}\right)_{t \geq 0}$.
(e) (2 pt.) Assume that G is connected. What is the probability that all members of the group end up with opinion A (ie after some time, everyone has opinion, $A \in S$, for the rest of time)? Express your answer in terms of G and the initial opinion σ_{0} of the group members.
[HINT: Try applying the martingale stopping theorem to the martingale $\left(Y_{t}\right)_{t \geq 0}$.]

SOLUTION:

(a) Let A, B denote two different opinions in S. If the group members in one connected component of G all agree on A initially, and the group members in another component all agree on B initially, there is no way to reach overall consensus.
(b) Suppose G is connected, and suppose that some vertex has opinion A. Then, for each vertex that has opinion A or has a neighbor with opinion A, there is at least a $1 / 2 n$ probability they will have opinion A next round. Therefore there is at least a $(1 / 2 n)^{n}$ chance that all vertices that have opinion A keep opinion A and all vertices that have a neighbor with opinion A adopts opinion A . If this happens n times in a row, then the entire graph will have opinion A, since the longest path between any two nodes is at most n. Therefore, with probability at least $p=(1 / 2 n)^{n^{2}}>0$, the entire graph will
have the same opinion after n timesteps. Hence the probability that consensus does not occur in $k n$ timesteps is at most $(1-p)^{k}$, since we can split it up into k blocks of n timesteps, and we reach consensus in each block with probability p. This goes to 0 as $k \rightarrow \infty$, so consensus is reached almost surely.
(c) Suppose the graph of opinions at time 0 is A-B-A. Then, each vertex switches opinion with probability exactly $1 / 2$, so $\mathbb{E}\left[X_{1} \mid \sigma_{0}\right]=3 / 2$, but $X_{0}=2$.
(d) It is clear that Y_{t} is determined by σ_{t} and is finite, so only the third condition remains to be checked. Let d_{v} denote the degree of vertex v, a_{v}^{t} denote the number of neighbors of v with opinion A at time t, and A^{t} denote the set of vertices with opinion A. Then, we have

$$
Y_{t}:=\sum_{v \in A^{t}} d_{v}=\sum_{v} a_{v}^{t}
$$

The second inequality follows since the left side counts all outgoing edges from vertices with opinion A and the right side counts all incoming edges to vertices with opinion A. Then, since a_{v}^{t} is determined by σ_{t}, we have

$$
\begin{aligned}
\mathbb{E}\left[Y_{t+1} \mid \sigma_{0}, \ldots, \sigma_{t}\right] & =\sum_{v} d_{v} P\left(v \in A^{t+1} \mid \sigma_{t}\right) \\
& =\sum_{v \in A^{t}} d_{v} P\left(v \in A^{t+1} \mid \sigma_{t}\right)+\sum_{v \notin A^{t}} d_{v} P\left(v \in A^{t+1} \mid \sigma_{t}\right) \\
& =\sum_{v \in A^{t}} d_{v}\left(\frac{1}{2}+\frac{a_{v}^{t}}{2 d_{v}}\right)+\sum_{v \notin A^{t}} d_{v} \frac{a_{v}^{t}}{2 d_{v}} \\
& =\sum_{v \in A^{t}} \frac{d_{v}}{2}+\sum_{v} \frac{a_{v}^{t}}{2} \\
& =Y_{t}
\end{aligned}
$$

(e) Consider the stopping time $T=\min \left\{t: Y_{t}=0 \vee Y_{t}=\sum_{v} d_{v}\right\}$. This is the first time either nobody has opinion A or everybody has opinion A. Note that once $Y_{t}=0$ or $Y_{t}=\sum_{v} d_{v}$, it will not change, and the event of reaching consensus on answer A is the same as the event $Y_{T}=\sum_{v} d_{v}$. From part (b), we know that $T<\infty$ almost surely, and so $Y_{T}=0$ or $Y_{T}=\sum_{v} d_{v}$ almost surely. So,

$$
\mathbb{E}\left[Y_{T}\right]=P\left(Y_{T}=\sum_{v} d_{v}\right) \sum_{v} d_{v} .
$$

By the stopping theorem,

$$
\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]=\sum_{v \in A^{0}} d_{v}
$$

Therefore,

$$
P\left(Y_{T}=\sum_{v} d_{v}\right)=\frac{\sum_{v \in A^{0}} d_{v}}{\sum_{v} d_{v}} .
$$

[^0]: ${ }^{1}$ Note that this only makes sense when $k, m \leq n$.

