
CS265, Fall 2023

Class 11: Agenda and Questions

1 Announcements

• HW5 due Friday!

2 Recap/Questions?

Any questions from the minilectures and/or the quiz (second moment method and LLL)?

3 Practice with the LLL

Recall the k-SAT problem. There are n variables x1, . . . , xn. We consider clauses that looks
like (xi1 ∨ xi2 ∨ xi3 ∨ · · · ∨ xik); that is, a clause is the OR of k literals. For today, assume
that each clause has k distinct variables that appear in it. We have a formula φ
that is the AND of m clauses. We would like to know: is φ satisfiable? That is, is there a
way to assign values to the variables x1, x2, . . . so that φ evaluates to TRUE?

Group Work

Suppose that each variable xi is in at most t clauses, for some parameter t that will
depend on k and that you’ll work out in this problem. Apply the LLL to get a statement
like the following:

Suppose that each variable is in at most t clauses of φ. Then φ is satisfiable.

(You should try to get t to be as large as possible. It’s not hard to see that the statement
above is true if, say, t = 1, but you should get a value of t that grows with k.)

Hint: Recall that to apply the LLL, you need to define a probability distribution and a
set of “bad” events. We set up this example in the minilecture video, we just didn’t work
out the conclusion. In the set-up of the video, we considered the probability distribution
to correspond to assigning TRUE/FALSE to each variable x1, . . . , xn independently with
probability 1/2 each, and we defined the bad event Ai to be the event that clause i is not
satisfied.

Group Work: Solutions

We claim that if each variable is in at most t ≤ 2k−2k clauses, then the formula is satis-
fiable. To see this, consider a uniformly random assignment to x1, . . . xn (ie setting each

1

xi to be TRUE/FALSE independently with probability 1/2). Define events A1, . . . , Am

where Ai is the indicator random variable of the ith clause NOT being satisfied. For a
clause with k variables to not be satisfied, all k variables must take the “bad” assignment,
and hence:

Pr[Ai] = 1/2k.

To apply the LLL, we now need to reason about the dependencies. To that end, we
claim that Ai is mutually independent of the set of clauses whose variable are disjoint
from the variables in clause i, namely the set

Si = {Aj : vbl(clausei) ∩ vbl(clausej) = ∅}.

Indeed, no matter the assignment to variables that occur in the clauses in Si, since none
appear in the ith clause, they can’t alter the probability of Ai. Now we simply count up
the number of events not in the set Si: namely

[#j such that vbl(clausei) ∩ vbl(clausej) ̸= ∅] ≤ kt,

since there are k variables in clause i, and each of them is in at most t other clauses.

To conclude, each Ai is mutually independent of all but d = kt other events, and hence
by the LLL with d = kt and p = 2−k, we have that Pr[∩inot(Ai] ≥ (1 − 2p)m > 0
provided dp ≤ 1/4, hence we want kt · 2−k ≤ 1/4, which implies that want t ≤ 2k−2/k.

To put some concrete numbers in here, if k = 10, then as long as each variable appears
in at most 210−8/8 = 25.6 clauses, then the formula is always satisfiable, no matter
the number of variables of clauses!!! Of course, now the big question on your mind
should be “Its great that we know such formulas are satisfiable, but how do we FIND a
satisfying assignment efficiently?” We’ll get to this in the next set of minilectures, on
the “Constructive LLL”!!

3.1 More Practice with LLL and Mutual Independence

Here’s an example where the mutual independence requirement is a bit trickier to think
about. Consider a set of m equations over variables x1, . . . , xn:

n∑
j=1

a
(1)
j xj ≡ b(1) mod 17

n∑
j=1

a
(2)
j xj ≡ b(2) mod 17

...
n∑

j=1

a
(m)
j xj ≡ b(m) mod 17

2

where:

• For all j = 1, . . . , n and all r = 1, . . . ,m, the coefficients a
(r)
j ∈ {0, 1, 2, . . . , 16} are not

all zero; and

• for all r = 1, . . . ,m, b(r) ∈ {0, 1, . . . , 16}.

Suppose that each variable xj appears in at most 4 of the m equations. (That is, for each j,

a
(r)
j = 0 for all but four values of r.)

Group Work

With the setup above, prove that there exists an assignment to the variables such that
none of the equations are satisfied.

Hint: Recall that because 17 is prime, for any a ∈ {1, . . . , 16} and any b ∈ {0, . . . , 16},
the equation ax ≡ b mod 17 has a unique solution for x ∈ {0, . . . , 16}.
Hint: It might be helpful to go back to the definition of mutual independence when arguing
about the value of d when applying the LLL.

Group Work: Solutions

Let’s assign each xi a random value in {0, 1, . . . , 16}. We will define our bad events as
follows. Let Ar be the event that the r’th equation is satisfied. The probability that this
occurs is 1/17. Indeed, by assumption there is some j so that a

(r)
j ̸= 0. Conditioned on

the values of xi for i ̸= j, the r’th equation reads:

a
(r)
j xj ≡ b(r) −

∑
i ̸=j

a
(r)
i xi mod 17

where we’ve moved everything deterministic (including the stuff we’ve conditioned on)
to the right hand side of the equation. By the hint, there is exactly one value of xj ∈
{0, . . . , 16} that will satisfy this equation, and so the probability that we hit that xj

is exactly 1/17. Since this holds no matter what values we’ve conditioned on for the
xi, i ̸= j, the probability that Ar occurs is also 1/17.a

Now we need to determine the “d” parameter in the LLL. We claim that d ≤ 3, in which
case we have

dp = 3 · 1
17
≤ 1/4

and we can apply the first version of the LLL from the lecture notes.

Let’s first try the sort of argument we tried for the k-SAT example above. (This won’t
work!) Each equation contains at most n variables, and each variable occurs in at most
4 other variables, so there are at most 4n other equations that share any variable with
the r’th equation. Clearly any equation that doesn’t share any variables is independent,

3

so we can take d = 4n. That’s correct, but this is not what we wanted! We’d get
dp = 3n/17 which will be much larger than 1/4 for any n ≥ 2.

Instead, let’s dig in a bit to the definition of mutual independence. For a given r,
we want to show that there is some set S ⊆ [m] of size at most 3 so that for any

J ⊆ [m] \ S, Pr[Ar| ∩ℓ∈J Aℓ] = Pr[Ar]. Suppose that j is such that c
(r)
j ̸= 0. (This

exists by assumption). By assumption, there are at most three other equations so that
xj appears in them. Let S be this set of at most three r’s. Now consider any set
J ⊆ [m] \ S. Just as we did above, condition on all of the values of xi other than xj.
(For example, set xi = yi for some fixed yi for all i ̸= j. Then for all ℓ ∈ J , Aℓ is
a deterministic event, since all of the variables that appear in the ℓ’th equation have
already been fixed. Thus:

Pr[Ar| ∩ℓ∈J Aℓ, xi = yi∀i ̸= j] = Pr[Ar|xi = yi∀i ̸= j] = 1/17,

where the last equality follows from the same reasoning we used to bound Pr[Ar] = 1/17.
Now we have

Pr[Ar| ∩ℓ∈J Aℓ] =
∑
y⃗

Pr[Ar| ∩ℓ∈J Aℓ, xi = yi∀i ̸= j] Pr[xi = yi∀i ̸= j]

=
∑
y⃗

1

17
Pr[xi = yi∀i ̸= j]

= 1/17

= Pr[Ar].

where above the sum is over all values yi ∈ {0, . . . , 16} for all i ̸= j. This shows what
we wanted to show. Hooray!

aFormally, we’d write

Pr[Ar] =
∑

yi:i ̸=j

Pr[xi = yi∀i ̸= j] · Pr[Ar|xi = yi∀i ̸= j].

We just argued that each Pr[Ar|xi = yi∀i ̸= j] = 1/17, so this says

Pr[Ar] =
∑

yi:i ̸=j

Pr[xi = yi∀i ̸= j] · 1/17 = 1/17.

4

4 Practice with derandomization via conditional ex-

pectation (from last class)

I don’t expect we will get to this today in class, but if you finish the rest early, try
this part that we didn’t get to last week!

Group Work

1. (Bonus) Let φ be a 3-CNF formula with n variables and m clauses, and 3 distinct
variables in each clause. Use the method of derandomization via conditional ex-
pectation to give an efficient (polynomial in n,m) deterministic algorithm to find
an assignment to φ so that at least a 7/8-fraction of the clauses are satisfied.

2. (Even more bonus) There is also a natural greedy algorithm for this problem:

• For i = 1, 2, . . . , n:

– Assign xi to be whichever value makes the most currently unsatisfied clauses
true (breaking ties arbitrarily).

In the previous example (maximizing the size of a cut), the algorithm we came up
with was secretly the natural greedy algorithm. Is your algorithm from the previous
part the same as this natural greedy algorithm? Is it better or worse?

Group Work: Solutions

1. We apply the method of deranomization by conditional expectation! We choose
values for the variables x1, . . . , xn one at a time, and as before, provided that we
have

E[number of sat clauses|x1, . . . , xt−1] ≥ 7m/8

there is a choice for xt so that

E[number of sat clauses|x1, . . . , xt] ≥ 7m/8.

Thus, all our algorithm has to do is find it. Let X be the number of satisfied clauses.
Then we can write

E[X|x1, . . . , xt] =
∑
C

Pr[C sat.|x1, . . . , xt].

Observe that for each clause C, we can actually compute

Pr[C sat.|x1, . . . , xt]

5

in time O(1): that’s because there are at most 8 outcomes. Thus, we can compute
the whole thing in time O(m). So our algorithm is:

• For t = 1, . . . , n:

– Compute E[X|x1, . . . , xt−1;xt = T]

– If that is ≥ 7m/8, set xt ← T ; otherwise set xt ← F .

• Return (x1, . . . , xn).

The whole thing takes time O(nm).

2. The “natural greedy algorithm” is worse than the algorithm from part (a). To see
this, we can consider an example with n = 8 and m = 8. The algorithm from part
(a) will come up with an assignment that satisfies 7 of the 8 clauses. The clauses
are (xi ∨ x7 ∨ x8) for i = 1, 2, . . . , 6, along with (x1 ∨ x2 ∨ x3)∧ (x4 ∨ x5 ∨ x6). Each
of x1, . . . , x6 appears in exactly two clauses, once as-is and once negated, so the
natural greedy algorithm can take an arbitrary choice for each of these variables.
If we choose to set all of them to True, then each of the last two clauses will be
unsatisfied, so the greedy algorithm will satisfy only 6 out of the 8 clauses, worse
than the algorithm from part (a). (If you don’t like that this is based on breaking
ties arbitrarily, consider repeating this example M times for some large M , and
repeating its negation M − 1 times; as M grows, this will still approach satisfying
only 3/4 of the clauses, instead of 7/8).

6

