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1 Introduction
In Class 10, we saw some surprisingly powerful applications of the Probabilistic Method. For those
applications, we leveraged one of two different techniques:

1. The “probability > 0 argument”: if we can design a random variable X such that Pr[X =
w] > 0, then w must exist. [We used this approach to show that the kth Ramsey number is at
least 2k/2.]

2. The “expectation argument”: if we can design a random process that creates some (random)
object X , and function f for which E[f(X)] ≥ α, then there must exist an object w for which
f(w) ≥ α. [We used this approach to argue that for every graph, there is a partition that cuts
at least half the edges, and for any k-SAT formula, there exists an assignment that satisfies at
least a (1− 1/2k) fraction of clauses.]

In this class, we will see two additional techniques that we can add to the above arsenal. The
first technique is known as the second-moment method, which is a convenient way of bounding the
probability that a random variable can equal 0 (and hence is often useful for proving things like
“there will be at least one blah blah blah”). The second technique, the Lovasz Local Lemma (aka
the “LLL”) applies when there are a number of random variables which only depend “locally” on
each other. This second technique takes more effort to describe, prove, and apply, though can be
extremely powerful.

2 The Second-Moment Method
Suppose that X is a real-valued random variable so that E[X] is very large. Must it be that Pr[X = 0]
is small? Not necessarily, since it could be that X takes a value of, say, a bajillion, with probability
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0.0001 and is otherwise zero. Most of the time, X = 0, but E[X] is still quite large. However, if
we also know that Var[X] is small, then it turns out that it is unlikely that X = 0. This is captured
by the second moment method, which is a way of bounding the probability that a random variable is
non-zero, via Chebyshev’s inequality.

Theorem 1. For a real-valued random variable, X ,

Pr[X = 0] ≤ Var[X]

(E[X])2
.

Proof. By Chebyshev’s inequality:

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ |E[X]|] ≤ Var[X]

(E[X])2
.

The second-moment method is especially well suited to settings where X represents a quantity
of interest, and we know that E[X] is fairly large. Just the fact that E[X] is large does not necessarily
mean that Pr[X = 0] is very small. If, however, we can bound the variance of X , then we are in
business. This technique has been fruitfully used to analyze phase transitions in random constraint
satisfaction settings.

Here’s one example, although we won’t go too much into the details. Consider making a random
3-SAT formula over n variables, by forming each clause by randomly selecting 3 variables from
x1, . . . , xn and choosing to negate or not negate each variable independently with probability 1/2.
If the number of clauses is small in comparison to n, then the formula will be satisfiable with
probability close to 1. If the number of clauses is very large, then the formula will, with high
probability, not be satisfiable. This prompts the question of understanding if/where there is a “sharp”
threshold in the number of clauses such that the probability of satisfiability goes from nearly 1 to
nearly zero as one crosses this threshold. It turns out that there is, and that a second-moment-
method-based argument can pin it down. We won’t cover this result, though feel free to check out
the recent line of work on these questions (e.g. [1, 2]).

For another example, we’ll sketch one simple application of the second-moment method to show
a sharp threshold for the emergence of a clique of size 4 in Gn,p when p = n−2/3. Here, Gn,p refers
to a random graph on n vertices, where each of the

(
n
2

)
possible edges is present, independently,

with probability p.
If p is large (the graph is very dense), then intuitively it is very likely that Gn,p will contain a

4-clique. On the other hand when p = 0, obviously the graph will not contain a 4-clique. How
large does p have to be before the likelihood of a 4-clique is high? It turns out that there’s a sharp
threshold around p = Θ(n2/3). More precisely, we have the following theorem.

Theorem 2. There are constants c1, c2 > 0 such that for sufficiently large n, If p ≤ c1n
−2/3, then

Pr[Gn,p has a clique of size 4] < 0.1

and if p ≥ c2n
−2/3, then

Pr[Gn,pn−2/3 has a clique of size 4] > 0.9.
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Proof. Let p = cn−2/3 for some constant c. For the first direction, since a 4-clique contains 6 edges,
letting X denote the number of 4-cliques in Gn,p, by linearity of expectation we have E[X] =(
n
4

)
p6 ≤ c6. Since X is a non-negative valued random variable that takes integer values, Pr[X ≥

1] ≤ E[X], and hence if c6 < 0.1, the probability that there exists a 4-clique is at most 0.1.
For the second direction, we will apply the second moment method. For sufficiently large n, and

p = cn−2/3, E[X] =
(
n
4

)
p6 ≥ c6/100, and hence for sufficiently large c, this expectation can be made

arbitrarily large. To apply the second moment method, we need to show that Var[X] ≪ (E[X])2.
To do this, let X1, . . . , X(n4)

denote indicator random variables for whether or not each potential
4-clique exists.

First, let’s do a thought experiment. Suppose that the Xi are independent (they are not! Make
sure you understand why). In that case,

Var[X] = Var[
∑
i

Xi] =
∑
i

Var[Xi] =

(
n

4

)
· p6(1− p6),

and the second moment method says that

Pr[X = 0] ≤
(
n
4

)
p6(1− p6)(
n
4

)2
p12

=
1− p6(
n
4

)
p6

≤ 44

c62
,

using the assumption that p ≥ c2n
−2/3. By choosing c2 large enough, this can be made small.

However, the Xi’s are not independent! It turns out that this is not too hard to deal with using
the second moment method. We’ll sketch how to get it started, and it’s a good exercise to work out
the details. First, observe that Xi and Xj are independent provided that the clique corresponding Xi

doesn’t share an edge with the clique corresponding to Xj . Fortunately, there aren’t too many pairs
which share an edge. More precisely, we have

Var[
∑
i

Xi] = E[(
∑
i

Xi)
2]− (EX)2

=
∑
i,j

E[XiXj]− (EX)2

=
∑
i

E[X2
i ] +

∑
i ̸∼j

E[XiXj] +
∑

i∼j,i̸=j

E[XiXj]− (EX)2,

where above i ∼ j means that the 4-cliques corresponding to Xi and Xj share at least one edge.
Thus, pairs i ̸∼ j are “good,” since if i ∼ j, then Xi and Xj are independent, E[XiXj] =
E[Xi]E[Xj], and the analysis that we did above holds. Notice that there are O(n7) pairs so that
i ∼ j, compared to O(n8) pairs where i ̸∼ j. Thus, the “problematic” term

∑
i∼j,i̸=j E[XiXj] is

relatively small, compared to the “good” term
∑

i ̸∼j E[XiXj]. When you work out the details, it
turns out that Var[X] can still be made arbitrarily smaller that E[X]2 by choosing c2 large enough,
and the second-moment method works.

3 The Lovasz Local Lemma
The Lovasz Local Lemma, originally due to Erdos and Lovasz [3], is a clever way of bounding the
probability that any number of “bad” events occur, in the setting that the events are not independent,
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but where each only depends on a small number of other events. [If Erdos’s name began with “L”
then this might be known as the “LLLL”, though as it stands his name is usually left off this.]

To motivate the theorem, consider a setting where we have some probability space, and have
identified a set of “bad” events, A1, . . . , An, such that Pr[Ai] ≤ p < 1. If the events were indepen-
dent, then

Pr[∩iAi] ≥ (1− p)n > 0,

and there is a nonzero probability that none of the bad events happen. [For 0/1 random variables
(i.e. “events”) the notation ∩iXi just mean “(not X1) and (not X2) and . . . .”]

If the events Ai are not independent, then we can always do a union bound, to conclude that

Pr[∩iAi] ≥ 1− np,

though the problem is that in many cases, np > 1, and hence this bound is useless. The LLL
provides a way around the overly-pessimistic union bound, in the setting where the events Ai are
not independent, but where each only depends on a few other events.

Definition 1. Given events B and B1, . . . , Bk defined over some probability space, B is mutually
independent of events {B1, . . . , Bk} if the probability of B does not change if we condition on any
subset of B1, . . . , Bk. Formally, for any subset J ⊆ {1, . . . , k},

Pr[B] = Pr[B| ∩i∈J Bi].

Theorem 3. Let A1, . . . , An denote a set of events such that, for all i, Pr[Ai] ≤ p, and where each
Ai is mutually independent of all but d other events. Then,

1. (Version I) Provided pd ≤ 1/4, Pr[∩iAi] ≥ (1− 2p)n > 0.

2. (Version II) Provided p(d+ 1) ≤ 1/e, Pr[∩iAi] ≥ (1− 1
d+1

)n > 0.

To give an interpretation of this theorem, consider the second condition that asserts that p(d +
1) ≤ 1/e. The expression p(d+ 1) is simply a union bound over d+ 1 dependent events (e.g. event
Ai and the ≤ d other events that are not mutually independent of Ai). If there were only d + 1
events in total, we would just need p(d+1) < 1 to ensure that Pr[∩iAi] > 0. The theorem, however,
says that if each union bound over the dependent neighborhoods of size d + 1 are satisfied, with
an extra constant factor room-to-spare, then it is possible to piece together all these interconnected
neighborhoods!

3.1 Proof of LLL
We will just prove the first of the two statements of Theorem 3, namely that if pd ≤ 1/4, then the
statement holds. The proof of the second assertion is almost identical.

The following lemma will be the central portion of the proof:

Lemma 2. We will prove that for any set S ⊂ {1, . . . , n}, and any i ̸∈ S,

Pr[Ai| ∩j∈S Aj] ≤ 2p.
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Given this lemma, the proof follows from writing out the probability we care about:

Pr[∩iAi] = (1− Pr[A1])(1− Pr[A2|A1])(1− Pr[A3| ∩j≤2 Aj]) · . . . .

Lemma 2 guarantees that each of the n terms in the above expression are at least 1− 2p, and hence

Pr[∩iAi] ≥ (1− 2p)n > 0,

proving the theorem.
We now prove Lemma 2:

Proof of Lemma 2. We prove this lemma inductively on the size of set S. For the base case, when
|S| = 0 is the empty set, Pr[Ai|∩j∈SAj] = Pr[Ai] ≤ p ≤ 2p by the definition of p. For the inductive
step, assume the lemma holds for all sets S with |S| ≤ k. Consider some set S with |S| = k + 1,
and an event Ai with i ̸∈ S. Let set Si denote a set of events that is mutually independent of Ai,
for which |{j ∈ {1, . . . , n}|j ̸∈ Si}| ≤ d. We now partition S into the events that intersect Si, and
those that do not: let Sind = S ∩ Si and Sdep = S \ Sind. These represent the partition of S into the
subset upon which Ai depends, and is independent from. If |Sind| = k + 1, then S = Sind and from
the definition of mutual independence,

Pr[Ai| ∩j∈S Aj] = Pr[Ai] ≤ p ≤ 2p,

and we are done. Henceforth, assume |Sind| ≤ k. For any events A,B,C by the definition of condi-
tional probability Pr[A|B] = Pr[A and B]/Pr[B], and similarly, Pr[A|B,C] = Pr[A and B|C]/Pr[B|C].
Hence, applying this to the partition of S into Sind and Sdep, we have:

Pr[Ai| ∩j∈S Aj] =
Pr[Ai and ∩j∈Sdep Aj| ∩j∈Sind Aj]

Pr[∩j∈SdepAj| ∩j∈Sind Aj]
. (1)

Because |Sind| ≤ k, we can apply our inductive assumption to the condition in the denominator, to
bound the denominator. Using a union bound, we have the following bound on the denominator:

Pr[∩j∈SdepAj| ∩j∈Sind Aj] ≥ 1−
∑

j∈Sdep

Pr[Aj| ∩j∈Sind Aj] ≥ 1− |Sdep|(2p) ≥ 1− 1

4p
(2p) = 1/2,

where we used the fact that, by assumption |Sdep| ≤ 1/4p since Sdep is subset of the events upon
which Si depends, and hence this set is bounded in size by d, which is defined to satisfy pd ≤ 1/4.

Given that the denominator of Equation 1 is at least 1/2, we now turn to upper bounding the
numerator. Since the probability that a set of events all occur is at most the probability of any one of
them, we have

Pr[Ai and ∩j∈Sdep Aj| ∩j∈Sind Aj] ≤ Pr[Ai| ∩j∈Sind Aj] ≤ p,

where we have used the fact that, by definition, Ai is mutually independent of the events in Sind.
Putting together our upper bound of p on the numerator of Equation 1 and lower bound of 1/2 on
the denominator, yields that the expression is at most 2p, and we have completed our induction
argument.

Note: At this point we are done with the material to be read before class. The material
after this point is meant as a reference for after class.
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3.2 Application: k-SAT
Theorem 4. Given a k-SAT formula over variables x1, . . . , xn such that 1) each clause has exactly
k distinct literals [variables], and 2) each variable occurs in at most 2k−2

k
clauses, then the formula

is satisfiable, no matter the number of variables or clauses!!

Proof. To prove this theorem via the LLL and probabilistic method, we first need to define a prob-
ability space and set of “bad” events. Consider assigning each variable xi to be true or false, inde-
pendently with probability 1/2. Define the events A1, . . . , Am so that Ai = 1 if the ith clause is not
satisfied by the assignment, and is 0 otherwise. Hence, for all i,

Pr[Ai] = 1− 1

2k
.

Now we need to understand the dependency structure of the bad events. Letting vbl(Ai) denote the
subset of variables {xj} that are present in the ith clause, we claim that Ai is mutually independent
of the set

Si = {Aj : vbl(Ai) ∩ vbl(Aj) = ∅}.

To see why this is the case, note that even if we condition on all the events Aj ∈ Si and the values of
every variable xj ̸∈ vbl(Ai), it is still the case that Pr[Ai] = 1−1/2k, as the ith clause only depends
on the values taken by the k variables in vbl(Ai). By assumption, each variable in vbl(Ai) occurs in
at most 2k−2

k
other clauses, and hence Ai is mutually independent of all but at most d = k· 2k−2

k
events.

By the LLL, provided (maxi Pr[Ai]) d = 1
2k

· k 2k−2

k
= 1/4 ≤ 1/4, the formula is satisfiable.

To see some concrete implications, if k = 4, then the assumptions of the theorem assert that each
variable occurs in at most 24−2/4 = 1 clause, in which case the theorem is trivially satisfiable. When
k is larger, the theorem starts to give interesting conclusions: for example, the theorem implies that
any instance of 10-SAT in which each variable occurs in at most 26 clauses, is satisfiable.

3.3 Asymmetric LLL
The formulation of the LLL that we gave in Theorem 3 just has two parameters, p and d, to describe
the probabilities of the events and sizes of the dependent neighborhoods. You might wonder if we
can get a more general statement that can deal with settings where a few events might have higher
probability, or where a couple of events are dependent on a large number of other events. The
following theorem is precisely this statement. The proof is analogous to the proof of Theorem 3,
provided one does a little more book-keeping.

Theorem 5 (Asymmetric LLL). Let A1, . . . , An denote a set of events, and for each Ai, let Si ⊂
{A1, . . . , An} denote a set that is mutually independent of Ai. If there exists a set of numbers
r1, . . . , rn ∈ [0, 1) such that

for all i,Pr[Ai] ≤ ri
∏
j ̸∈Si

(1− rj),

then
Pr[∩iAi] ≥

∏
i

(1− ri).
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We can show that this recovers Theorem 3. To see this, observe that under the conditions of
Theorem 3, maxi |{j|Aj ̸∈ Si}| = d. Let ri = 1/(d + 1). Under the conditions of the second
version of Theorem 3, for any event Ai,

Pr[Ai](d+ 1) ≤ 1/e,

=⇒ Pr[Ai] ≤
1

d+ 1
· 1
e
≤ 1

d+ 1

(
1− 1

d+ 1

)d

≤ 1

d+ 1

∏
j ̸∈Si

(
1− 1

d+ 1

)
= ri

∏
j ̸∈Si

(1− rj).

Applying Theorem 5, we get that

Pr[∩iAi] ≥
∏
i

(1− ri) =

(
1− 1

d+ 1

)n

> 0

which recovers the second condition of Theorem 3.

Applying this more general version of the LLL is a bit more involved, as we need to come up
with the values {ri} ourselves.
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