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1 Introduction
Last week we discussed stationary distributions, and also saw the Metropolis Algorithm for con-
structing a Markov chain that has a desired stationary distribution. This prompts the following
fundamental question: How long must we run a Markov chain until the state of the chain is close to
being drawn from the stationary distribution? The answer corresponds to the notion of mixing time.
Before defining the mixing time, we begin by giving a few different definitions of total-variation
distance, which will be a natural metric for measuring the distance between distributions.

1.1 Total Variation Distance
Definition 1. The total variation distance (also referred to as statistical distance) between two dis-
tributions, D1, D2 over some countable domain, S, is defined as one half the L1 distance:

∥D1 −D2∥ =
1

2

∑
s∈S

|D1(s)−D2(s)| = max
A⊂S

(
Pr
D1

[A]− Pr
D2

[A]

)
,

where D1(s) denotes the probability that distribution D1 assigns to element s, and PrD1 [A] =∑
s∈AD1(s).

The above definition is equivalent to the following dual definition of total variation distance,
defined in terms of any joint distribution J1,2 over pairs (X, Y ), such that the marginal distribution
of X is D1 and the marginal distribution of Y is D2.

Fact 2. For any such joint distribution, J1,2 over pairs X, Y where the marginal of X is D1 and the
marginal distribution of Y is D2, it holds that

∥D1 −D2∥ ≤ Pr[X ̸= Y ],
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and there exists a joint distribution J∗
1,2 for which these quantities are equal.

Before giving a proof of the above fact, we provide an intuitive illustration of the above.

Example 3. Suppose D1 corresponds to a fair coin flip, and D2 corresponds to flipping a coin that
lands h with probability 0.6 and t with probability 0.4. ∥D1−D2∥ = 1

2
(|0.5−0.6|+|0.5−0.4|) = 0.1.

We can also define a joint distribution over pairs of outcomes X, Y as follows:

Pr[X = h, Y = h] = 0.5,Pr[X = h, Y = t] = 0,Pr[X = t, Y = h] = 0.1,Pr[X = t, Y = t] = 0.4.

This joint distribution respects the marginals, as Pr[X = h] = 0.5, and Pr[Y = h] = 0.5 + 0.1 =
0.6. Additionally, Pr[X ̸= Y ] = 0.1 = ∥D1 −D2∥, which is consistent with the above Fact. In this
example, it is also clear that we cannot modify the joint distribution to decrease Pr[X ̸= Y ] any
more without changing the marginal probabilities.

Proof of Fact 2. Given distributions D1 and D2 over a countable domain, W , (the same proof holds
more generally, but is a bit fussier since then one needs integrals, etc.), define p =

∑
xmin(D1(x), D2(x)).

First, we claim that
1− p = ∥D1 −D2∥.

To see this, let A,B ⊂ X be defined such that A = {x : D1(x) ≥ D2(x)}, and B = {x : D1(x) <
D2(x)}.

∥D1 −D2∥ =
∑
x∈A

(D1(x)−D2(x)) =
∑
x∈B

(D2(x)−D1(x)),

and hence

1− p = 1−
∑
x∈A

D2(x)−
∑
x∈B

D1(x) =

(∑
x∈A

D1(x) +
∑
x∈B

D1(x)

)
−
∑
x∈A

D2(x)−
∑
x∈B

D1(x).

Rearranging terms, this equals ∑
x∈A

(D1(x)−D2(x)) = ∥D1 −D2∥.

Now we will show that we can construct a joint distribution over pairs (X, Y ) whose marginal
distributions, respectively, are D1 and D2, and where Pr[X ̸= Y ] = 1 − p. To do this, consider the
following joint distribution: with probability p, select element x with probability min(D1(x),D2(x))

p
, and

set X = Y = x. [From the definition of p, it is clear that these probabilities define a distribution.]
With probability 1 − p, we draw X from the distribution supported on set A that puts probability

D1(x)−D2(x)∑
y∈A(D1(y)−D2(y))

on element x, and we draw Y from the analogous distribution supported on set

B, that puts probability D2(x)−D1(x)∑
y∈B(D2(y)−D1(y))

on element x. This is a valid distribution, the marginal
distributions are D1 and D2, respectively, and Pr[X = Y ] = p, by construction.

To see that no joint distribution can have Pr[X = Y ] > p, note that in the above construction,
for each x, Pr[X = Y = x] = min(D1(x), D2(x)), and hence there is no element x for which this
probability can be increased while maintaining the marginal distributions. Since this is true for all
x, it is impossible for Pr[X = Y ] =

∑
x Pr[X = Y = x] to be any larger than p for any valid joint

distribution.
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2 Mixing Times
The following quantity, ∆(t), will measure the worst-case distance of a Markov chain to the station-
ary distribution, where the “worst-case” is with respect to selecting the starting state.

Definition 4. Given a finite, irreducible, aperiodic Markov chain {Xt} with stationary distribution
π, let

∆(t) = max
s

∥π − P t
s∥,

where P t
s denotes the distribution of Xt, conditioned on X0 = s.

We are now ready to define the mixing time of a Markov chain. The mixing time will be the first
time, t, such that no matter what state one starts the chain in, the distribution of the state at time t is
close, in total variation distance, to the stationary distribution.

Definition 5. The mixing time of a Markov chain with stationary distribution π, will be denoted
τmix, and is defined as

τmix = min

{
t : ∆(t) ≤ 1

2e

}
.

The choice of constant 1
2e

in the definition of mixing time is somewhat arbitrary, and in some
cases, people just replace that constant by 1

2
. The reason it doesn’t matter is captured by the following

fact, whose proof we will see after we develop an understanding of “couplings”.

Fact 6. For any finite, irreducible, aperiodic Markov chain, ∆(t) is non-increasing; that is, for all
t, ∆(t+ 1) ≤ ∆(t). Additionally, for any constant c ≥ 1,

∆(c · τmix) ≤
1

ec
.

3 Coupling
To motivate the connection between couplings, the dual definition of total variation distance, and
mixing time, consider the following basic fact about ∆(t) :

Fact 7.
∆(t) = max

s
∥P t

s − π∥ ≤ max
s,s′

∥P t
s − P t

s′∥ ≤ 2∆(t).

Proof. Recall that one property of the stationary distribution, π, is that if we select X0 according
to π, and run the chain for any number of steps, the distribution of the chain at time t is π. Hence
π =

∑
w π(w)P t

w, and maxs ∥P t
s − π∥ = maxs ∥P t

s −
∑

w π(w)P t
w∥. Since π is a weighted average

of the P t
w for different w’s, this distance is at most the distance between the two furthest points,

namely maxs,s′ ∥P t
s − P t

s′∥. The final inequality in the statement of the fact is from the triangle
inequality, since

∥P t
s − P t

s′∥ ≤ ∥P t
s − π∥+ ∥π − P t

s′∥.
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The idea behind couplings is to directly bound maxs,s′ ∥P t
s − P t

s′∥ by showing that for any two
initial states s, s′ one can construct a joint distribution over pairs (Xt, Yt) where Xt is drawn from P t

s

and Yt is drawn from P t
s′ such that Pr[Xt ̸= Yt] is as small as possible. Recalling the dual definition

of total variation distance (Fact 2), if we can prove that Pr[Xt ̸= Yt] is sufficiently small for some
value of t, then we will have bounded ∆(t), and hence the mixing time. The following definition
formalizes the properties that we require of this joint distribution:

Definition 8. Given a Markov process, defined by transition probabilities P , a coupling is a joint
process (X0, Y0), (X1, Y1), . . . such that the following conditions hold:

1. The marginal distributions of {Xt} and {Yt} correspond to the Markov process, namely for
all states s, s′,

Pr[Xt = s|Xt−1 = s′] = Ps,s′ ,Pr[Yt = s|Yt−1 = s′] = Ps,s′ .

2. If Xt = Yt, then Xt+1 = Yt+1, namely once the two chains meet/“couple”, they stay together
for good.

Proposition 9. Let {Xt} be a finite, irreducible, aperiodic Markov chain. Given a (valid) coupling
{(Xt, Yt)} of {Xt}, let Ts,s′ = min{t : Xt = Yt|X0 = s, Y0 = s′}. Then

∆(t) ≤ max
s,s′

Pr[Ts,s′ > t].

Proof. From Fact 7,

∆(t) ≤ max
s,s′

∥P t
s − P t

s′∥ ≤ max
s,s′

Pr[Xt ̸= Yt|X0 = s, Y0 = s′] ≤ max
s,s′

Pr[Ts,s′ > t],

where the second-to-last inequality is from the dual definition of total variation distance given in
Fact 2.

How do we make a valid coupling? One option is to have the chains {Xt} and {Yt} evolve
independently, up until the first time that Xt = Yt, after which point they evolve together (according
to the Markov process). This is a perfectly valid coupling.

The punchline from the above proposition, however, is that if we want a good bound on the
mixing time, we need to design a coupling that gets Xt = Yt as fast as possible—namely we
are trying to get Xt and Yt to “couple” as soon as possible, no matter their initial states. The
“independent” coupling, while valid, isn’t trying to get the chain to meet especially quickly, and in
many cases, such a coupling would give rather bad bounds on the mixing time, in comparison to the
bounds that could be proved via more creative couplings.

3.1 Illustration: Random Proper Colorings
Given a graph with degree at most d, one can describe a simple Markov chain over proper k-
colorings of the graph. (Recall that a coloring of the nodes with one of k colors is “proper” if
no two neighboring nodes are colored with the same color.) Let X0 denote some initial proper col-
oring. To obtain Xt from Xt−1, choose a vertex v uniformly at random from the vertices, and a color
c uniformly at random from the k colors, and color vertex v with color c if that would be a valid
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coloring (given the assignment of colors to the other vertices as specified by Xt−1). If coloring v
with c would not result in a proper coloring, then Xt = Xt−1.

Since the graph in question has degree at most d, there exists a coloring with k = d + 1 colors,
since for any assignment of colors to the neighbors of a node, v, there is at least k − degree ≥ 1
choice of color one could use to color node v so that it respects its neighbors’ colors.

The following conjecture states that, as long as their is one extra bit of flexibility beyond this,
namely if k ≥ d + 2, then the above Markov chain mixes in polynomial time. (Its not hard to show
that the stationary distribution of this chain is the uniform distribution over proper colorings—since
this chain has symmetric transition probabilities, and is aperiodic and irreducible). If this chain
mixes fast, then this provides a natural way of efficiently answering questions like “What is the
probability node 3 and node 7 have the same color in a random proper coloring?”

Conjecture 10. Given a graph with maximum degree d, the above Markov chain over proper color-
ings will mix in time polynomial in the size of the graph, provided k ≥ d+ 2.

We do not know whether the above conjecture is true of not. If k ≥ 2d + 1, we can prove the
analog of the above conjecture, via the construction of a fairly fancy coupling. If k ≥ 4d+ 1, as we
show below, a relatively simple coupling will suffice to prove fast mixing.

Proposition 11. Given a graph with n vertices with maximum degree d, the above Markov chain
over proper colorings will mix in time polynomial in the size of the graph, provided k ≥ 4d + 1.
Specifically, provided k ≥ 4d+ 1, the mixing time is bounded by kn(2 + log n).

Proof. Consider the coupling {Xt, Yt} where Xt evolves independently, and, at each step, Yt chooses
the same node v and the same color c. Just because X and Y choose the same vertex and color does
not mean that the vertex will be colored identically in X and Y after that step—there is some prob-
ability that X will “accept” that color, but Y cannot accept that color because of the colors of the
neighboring nodes. We will show, however, that this sort of issue won’t happen too often.

To that end, let Zt denote the number of vertices in the graph for which Xt and Yt assign different
colors.

What is the probability taht we make positive progress, namely that Zt+1 = Zt − 1? Out of the
nk possible choices of vertex v and color c, how many will result in Zt+1 decreasing by one? Well,
we need to first choose one of the Zt vertices for which the colors differ, and then we need to pick a
color c that is not one of the ≤ d colors of a neighboring vertex in Xt or one of the ≤ d colors of a
neighboring vertex in Yt. Hence there ar at least Zt(k− 2d) such good choices of v and c. Thus, the
probability of progress is at least Zt(k−2d)

nk
.

What is the probability that we make negative progress, namely that Zt+1 = Zt + 1? Well we
need to pick a vertex that is a neighbor of one of the Zt vertices on which the colorings differ, and
a color which is the color of that neighbor in one of the two chains, hence there are at most dZt · 2
such bad options, and the probability is at most 2dZt

nk
.

Putting this together

E[Zt+1|Zt] ≤ Zt +
2dZt

kn
− Zt(k − 2d)

nk
= Zt − Zt

(
k − 4d

kn

)
.

Hence provided k ≥ 4d+ 1, E[Zt+1] ≤ E[Zt](1− 1
kn
), and inductively we have that

E[Zt] ≤ Z0(1−
1

kn
)t ≤ ne−

t
kn ,
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where we used the fact that Z0 ≤ n, and the fact that 1 − α ≤ e−α. Since Zt is a non-negative
integer,

Pr[Zt > 0] = Pr[Zt ≥ 1] ≤ E[Zt] ≤ ne−
t
kn ,

and hence if t ≥ kn(2 + log n), this quantity is less than 1/e2 < 1/2e. Hence the mixing time is
bounded by kn(2 + log n).

Note: at this point we are done with the material for the pre-lecture videos. The stuff after
this is meant as a reference for after class.

4 Further examples: shuffling
In this section we’ll see a few more examples of bounding mixing times, in the context of shuffling.
Our first example will use a technique called “strong stationary stopping times.” The second example
uses coupling.

4.1 Bounding the Mixing Time via Strong Stationary Stopping Times
The following approach to bounding the mixing time is cool when it works, though there are many
Markov chains for which it doesn’t work. If you’re asked to bound the mixing time of a chain, it is
often worth spending a few moments thinking whether you can use this technique, but don’t expect
it to always work.

Definition 12. Given a Markov chain {Xt} with stationary distribution π, a strong stationary stop-
ping time is a random variable T defined in terms of the random variables X0, X1, . . . , with the
property that the event that T = t depends only on X0, . . . , Xt, and that for all states s,

Pr[Xt = s|t ≥ T ] = π(s).

The condition in the definition that the event that T = t depends only on X0, . . . , Xt, makes
sure that you wouldn’t need to “look into the future” of a chain to figure out whether T has already
happened or not. The condition that Pr[Xt = s|t ≥ T ] = π(s) means that once T has happened, the
chain is completely mixed, in the sense that the chain is at the stationary distribution.

Fact 13. Given a Markov chain with stationary distribution π, and a strong stationary stopping time
T , for any time t ≥ 0,

∆(t) ≤ Pr[T > t].

Proof. We can re-express the distribution after time t, when starting in state s, P t
s as the weighted

combination of this distribution conditioned on t ≥ T and on t < T :

P t
s = π · Pr[t ≥ T ] + q · Pr[t < T ],

for some distribution q. Hence

∆(t) = ∥π − P t
s∥ = ∥π − π · Pr[t ≥ T ]− q · Pr[t < T ]∥ = Pr[t < T ]∥π − q∥ ≤ Pr[t < T ],

since the distance between any two distributions is at most 1.
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The following example provides a nice illustration of how a strong stationary stopping time can
be fruitfully used.

Example 14 (Top in at Random Shuffle). Consider the shuffling scheme where we have a stack
of n cards, and iteratively take the top card, and insert it into a uniformly random position in the
stack (and with probability 1/n we insert it into the top spot, in which case the ordering remains
unchanged at that iteration). It is not hard to show that this chain is irreducible and aperiodic, and
that the stationary distribution is the uniform distribution over the n! orderings of the deck. How
many times iteration must we run this shuffle until the deck is mixed (i.e. close to being at a random
ordering)?

Define the stopping time T to be one plus the first time at which the card that started at the
bottom of the deck has reached the top. (I.e. if the Ace of Spades started at the bottom of the deck
at time 0, the stopping time is the timestep after the first time that it reaches the top.) To see that
this is a valid stationary stopping time, consider that, at any time before T in the shuffle, given the
identities of the cards below this bottom card, their ordering is uniformly random. Hence, at the
first time where this bottom card has reached the top, we have a uniformly random ordering of the
n − 1 other cards, with this bottom card at the top. At the next timestep, we have inserted this in a
uniformly random index, and hence have a uniformly random ordering.

To analyze E[T ], note that as we do the shuffle, the bottom card will monotonically rise in the
deck, until its at the top. When it has index i > 1, the probability it moves up by one in the deck is
(n− i+ 1)/n and with the remaining probability, it stays in the same location. Hence

E[T ] = 1 +
n

1
+

n

2
+

n

3
+ . . . ≈ n log n,

and by Markov’s inequality, Pr[T > 2en log n] ≤ 1/(2e), and hence by Fact 13 the mixing time of
this shuffling is at most (2e)n log n.

4.2 Another shuffling situation
Consider the shuffling protocol that is the “time reverse” process to the shuffling considered in
Example 14. Specifically, consider the shuffling protocol where, at each step, a uniformly random
card is selected, and then moved to the top of the deck. Given two initial orderings, s and s′, consider
defining the joint process (Xt, Yt) as follows. X0 = s and Y0 = s′, and at each step, the X chain
chooses a uniformly random card and moves it to the top of the deck. The chain Y , selects the same
card and moves that to the top. Here, when we say “selects the same card”, we don’t mean that the
index of the card is the same, we mean that the value of the card is the same—if X selects the 8 of
hearts to move to the top, then chain Y will also select the 8 of hearts, and move that to the top.

Why is this a valid coupling? Well, its clear that the marginal distributions are still consistent
with the original chain, because the choice of the card is still uniformly random (its just the SAME
randomness in the X and Y chain).

Why is this a good choice of coupling? Well letting St denote the set of cards that have been
selected up through time t, the chains Xt and Yt will both have the top |St| cards on their decks being
the cards in set St, and they will have the same order. Hence, the time until the chains couple is at
most the time until all n cards are selected (no matter the initial orderings of the deck, namely for
all s, s′). This time until all n cards have been selected at least once is exactly the coupon-collector
problem, and hence we know that, with high probability, this time is bounded by, say nlogn+ o(n).
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If, instead of this coupling, we used the naive coupling where the chains Xt and Yt evolved
independently until the first time they happen to be the same, the expected time until the chains
couple would be > n!.
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