Class 16: Agenda/Questions

1 Announcements

- Hope you all had a nice break!
- HW7 due Friday!

2 Questions?

Any questions from the minilectures and/or the quiz? (Martingales, the Doob martingale, Azuma-Hoeffding)

3 Chromatic numbers

In this exercise we'll practice using Azuma-Hoeffding

Group Work

Let $G \sim G_{n, p}$ be a Erdos-Renyi random graph (so there are n vertices, and each edge is present independently with probability p). Let $A=\chi(G)$ be the chromatic number of G. That is, A is the minimum number of colors necessary to properly color G (ie color the nodes of the graph such that no pair of neighboring nodes are assigned the same color).

1. Consider the Doob vertex exposure martingale. That is:

- For $i \in\{1, \ldots, n\}$, let X_{i} denote the the status of the edges between vertex i and vertices $\{1, \ldots, i-1\}$.
- $Z_{i}=\mathbb{E}\left[A \mid X_{1}, \ldots, X_{i}\right]$
[Note: this is a slightly different definition of the vertex exposure martingale than was in the lecture notes. Both work fine for this example.]
Use the Azuma-Hoeffding inequality to show that

$$
\operatorname{Pr}[|A-\mathbb{E}[A]|>c \sqrt{n}] \leq 2 \exp \left(-c^{2} / 2\right)
$$

(Notice that you may not know what $\mathbb{E}[A]$ is-that's okay!)
Hint: To use Azuma-Hoeffding, you need to bound $\left|Z_{i}-Z_{i-1}\right|$. How much can your expectation of the chromatic color change if I tell you additional information about a single vertex?

Hint: Bounding $\left|Z_{i}-Z_{i-1}\right|$ really formally is actually a bit tricky. Try to come up with an intuitive bound, and if you have time try to work it out formally.
2. Repeat the same exercise with the edge exposure martingale:

- Let X_{i} denote the the status of the i 'th edge, for $i \in\left\{1, \ldots,\binom{n}{2}\right\}$.
- $Z_{i}=\mathbb{E}\left[A \mid X_{1}, \ldots, X_{i}\right]$

Do you get the same thing? Do you get something better? Worse?
3. (CHALLENGING, but something to think about if you finish early.) What can you say about $\mathbb{E}[A]$?
Note: If you're interested, check out https://arxiv. org/abs/0706. 1725 for a surprisingly strong statement about the chromatic number of random graphs!!.

4 Gambling

In this exercise, we'll get yet more practice applying Azuma-Hoeffding.

Group Work

Consider the following gambling game:

- At time t, you can choose to bet any amount you like in $[0, B]$, where B is a house limit.
- A fair coin is flipped. If it's heads, you win the amount that you bet; if tails, you lose the amount that you bet.

You're allowed to be in debt; you don't stop when you run out of money.

1. Suppose that the amount you bet is a deterministic function of everything that's happened so far. Set up a martingale $\left\{Z_{t}\right\}$ (with respect some sequence $\left\{X_{t}\right\}$ that you have to define) so that Z_{t} is the amount of money you have at time t.
2. Use the Azuma-Hoeffding inequality to bound

$$
\operatorname{Pr}\left[\left|Z_{n}\right| \geq c B \sqrt{n}\right]
$$

3. Now suppose that you can use any betting strategy you like, even a randomized one. Is your martingale from part 1 still a martingale? If not, repeat parts 1 and 2 when your betting strategy can be randomized.
