CS265, Fall 2023

Class 17: Agenda and Questions

1 Announcements

- HW7 due tomorrow.
- HW8 (last one!!!) out now.
- You are all done with quizzes!
- Final exam is Tuesday, December 12, 3:30-6:30pm.
- Practice exam released soon.
- Plan for Week 10:
- Tuesday: Fun day on pseudorandomness (no quiz, not on HW or exam)
- Thursday: The research frontier!

2 Questions?

Any questions from the minilectures and/or the quiz? (Stopping times, Martingale stopping theorem)

3 Wald's equation

In this exercise we'll get some practice applying the martingale stopping theorem, to prove Wald's equation.

Theorem 1 (Wald's equation). Suppose that X_{1}, X_{2}, \ldots are non-negative i.i.d. random variables, distributed according to some random variable X. Let T be a stopping time for $\left\{X_{i}\right\}$. If $\mathbb{E}[X]$ and $\mathbb{E}[T]$ are both bounded, then

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i=1}^{T} X_{i}\right]=\mathbb{E}[T] \cdot \mathbb{E}[X] \tag{1}
\end{equation*}
$$

Group Work

1. Wald's equation hopefully seems pretty intuitive. But there is something to prove! Come up with an example of some random variables X_{i} and T that don't obey the hypotheses of Theorem 1, so that the (1) does not hold.

Note: To make this more challenging, try to violate as few of the hypotheses as possible.
2. Let $Z_{i}=\sum_{j=1}^{i}\left(X_{j}-\mathbb{E}[X]\right)$. Prove that $\left\{Z_{i}\right\}$ is a martingale with respect to $\left\{X_{i}\right\}$.
3. Argue that the martingale stopping theorem applies to $\left\{Z_{i}\right\}$ and T, where X, T are as in Theorem 1.
4. Use the Martingale stopping theorem to prove Wald's equation.
5. Consider rolling a fair, six-sided die repeatly. Let X be the sum of all of the rolls up until the first " 6 " is rolled, not including that 6 . What is $\mathbb{E} X$?

Group Work: Solutions

1. There are many examples, but here's a simple one. Let $X_{1}=0$ with probability $1 / 2$ and 1 with probability $1 / 2$. Let $T=1-X_{1}$. That is, if $X_{1}=0$, then $T=1$, and if $X_{1}=1$, then $T=0$. This violates the hypotheses because T is not a stopping time. Indeed, we may find out at time $t=1$ that the stopping time T was actually 0 . To see that this is a counterexample, notice that $\mathbb{E}[T]=\mathbb{E}[X]=1 / 2$, while

$$
\mathbb{E}\left[\sum_{i=1}^{T} X_{i}\right]=0
$$

(To see the last thing, notice that in fact this sum is always 0 . If $X_{1}=0$, then $T=1$ and the sum is just $X_{1}=0$. If $X_{1}=1$, then $T=0$ and the sum is empty.
2. We write

$$
\begin{aligned}
\mathbb{E}\left[Z_{t} \mid X_{1}, \ldots, X_{t-1}\right] & =\sum_{j=1}^{t-1}\left(X_{j}-\mathbb{E} X\right)+\mathbb{E}\left[X_{t}-\mathbb{E} X \mid X_{1}, \ldots, X_{t}\right] \\
& =\sum_{j=1}^{t-1}\left(X_{j}-\mathbb{E} X\right)=Z_{t-1}
\end{aligned}
$$

3. We use the third condition. By the assumption in Wald's thm, $\mathbb{E} T<\infty$, so we just need to show that there is some c so that, for all $i, \mathbb{E}\left[\mid Z_{i+1}-Z_{i} \| X_{0}, \ldots X_{i}\right]<c$. This conditional expectation is just

$$
\mathbb{E}\left|X_{i+1}-\mathbb{E} X\right| \leq 2 \mathbb{E}[X]
$$

(using the triangle inequality). And this is again bounded by the assm in Wald's theorem.
4. Applying the Martingale stopping theorem, we have

$$
\begin{aligned}
0 & =\mathbb{E} Z_{0} \\
& =\mathbb{E} Z_{T} \\
& =\mathbb{E}\left[\sum_{j=1}^{T}\left(X_{j}-\mathbb{E}[X]\right)\right] \\
& =\mathbb{E}\left[\sum_{j=1}^{T} X_{j}\right]-\mathbb{E}[T] \mathbb{E}[X]
\end{aligned}
$$

and rearranging proves (1).
5. Let X_{i} be the outcome of the i'th roll, and let T be the first time we see a six. Then T is a stopping time for X_{i} and $\mathbb{E} T, \mathbb{E} X$ are both bounded. Thus,

$$
\mathbb{E} \sum_{i=1}^{T} X_{i}=\mathbb{E}[T] \mathbb{E}[X]=6 \cdot \frac{7}{2}=21
$$

However, what we are after is actually $\sum_{i=1}^{T-1} X_{i}$, but by definition the last term is 6 , so we have

$$
\sum_{i=1}^{T-1} X_{i}=21-6=15
$$

4 Ballot Counting

Suppose that there is an election with two candidates, A and B, and n voters; say candidate A is the winner, receiving $N_{A}>N_{B}$ votes. (So $N_{A}+N_{B}=n$). The ballots are counted in a random order. What is the probably that A remained ahead for the entire count?

Let A_{t} be the number of votes for A at time t; let B_{t} be the number of votes for B at time t.

Let $Z_{t}=\frac{A_{n-t}-B_{n-t}}{n-t}$. That is, we imagine that we've already done the count, and then we "uncount" the votes one-by-one.

Group Work

1. Let T be the smallest t so that $Z_{t}=0$; if this never occurs, set $T=n-1$.

Explain why T is a stopping time for $\left\{Z_{t}\right\}$, and why the Martingale Stopping Theorem applies to it. (Assume for now that $\left\{Z_{t}\right\}$ is indeed a martingale; you'll show that soon).
2. Apply the Martingale Stopping Theorem to $\left\{Z_{t}\right\}$ and T, and use it to compute the
probability that candidate A was ahead throughout the count.
3. Show that $\left\{Z_{t}\right\}$ is a martingale. (Hint: It might help to think of the process that Z_{t} is tracking as follows. Start with two piles of ballots, one of size N_{A} and one of size N_{B}. Then choose a uniformly random vote to remove from one of the two piles; that will give you two piles corresponding to Z_{1}. Continue in this way.)

Group Work: Solutions

1. Intuitively, T is a stopping time since we don't need to "look into the future" to compute it: we know at time t whether or not $T=t$. With probability $1, T<n-1$, so the second item of the Martingale Stopping Theorem applies.
2. Applying the Martingale Stopping Theorem, we have

$$
\mathbb{E}\left[Z_{T}\right]=\mathbb{E}\left[Z_{0}\right]=\frac{A_{n}-B_{n}}{n}=\frac{N_{A}-N_{B}}{n}
$$

On the other hand, there are two possibilities for how Z_{T} could end up. Either $T<n-1$, which means that $Z_{T}=0$, or else $T=n-1$, which means that $Z_{T}=(1-0) / 1=1$. (Notice that if $Z_{T}=n-1$, we must have $A_{1}=1$ and $B_{1}=0$, since if $B_{1}=1, A_{1}=0$, we would have had $Z_{t}=0$ for some $t<n-1$, since candidate B got ahead somehow.) Thus, if $Z_{T}=1$ (and $T=n-1$), then candidate A was ahead for the whole count; otherwise $T<n-1$ and $Z_{T}=0$.
Let p be the probability that candidate A was ahead for the whole count. Then the above reasoning shows that

$$
\mathbb{E}\left[Z_{T}\right]=(1-p) \cdot 0+p \cdot 1
$$

Using the above, this shows

$$
p=\frac{N_{A}-N_{B}}{n} .
$$

3. To show that $\left\{Z_{t}\right\}$ is a martingale, we have

$$
\mathbb{E} Z_{t+1}=\frac{\mathbb{E} A_{n-t-1}}{n-t-1}-\frac{\mathbb{E} B_{n-t-1}}{n-t-1}
$$

Consider each of these terms separately. By the intuition in the hint, the expectation $\mathbb{E} A_{n-t-1}$ is the probability that we chose our "removed" ballot from pile A (that would be $\left.A_{n-t} /(n-t)\right)$ times $A_{n-t}-1$; plus the probability that we "removed" the ballot from pile $B\left(B_{n-t} /(n-t)\right)$ times A_{n-t}. We have a similar calculation for the other term. Thus,

$$
\begin{aligned}
\mathbb{E}\left[Z_{t+1} \mid Z_{1}, \ldots, Z_{t}\right]= & \frac{\mathbb{E} A_{n-t-1}}{n-t-1}-\frac{\mathbb{E} B_{n-t-1}}{n-t-1} \\
= & \frac{1}{n-t-1}\left(\frac{A_{n-t}}{n-t} \cdot\left(A_{n-t}-1\right)+\frac{B_{n-t}}{n-t} \cdot A_{n-t}\right)+ \\
& \frac{1}{n-t-1}\left(\frac{B_{n-t}}{n-t} \cdot\left(B_{n-t}-1\right)+\frac{A_{n-t}}{n-t} \cdot B_{n-t}\right)
\end{aligned}
$$

using the fact that $B_{n-t}+A_{n-t}=n-t$, this simplifies to

$$
\begin{aligned}
\cdots & =\frac{A_{n-t}}{n-t+1}+\frac{B_{n-t}}{n-t+1}-\frac{A_{n-t}}{(n-t-1)(n-t)}-\frac{B_{n-t}}{(n-t-1)(n-t)} \\
& =\frac{A_{n-t}}{n-t}+\frac{B_{n-t}}{n-t} \\
& =Z_{t} .
\end{aligned}
$$

This is what we wanted, so Z_{t} is indeed a martingale.

