
CS265, Fall 2023

Class 3: Agenda, Questions, and Links

1 Warm-Up

Let Sr = {x ∈ Z∗
n : xr = ±1 mod n}. Is Sr a group?

2 Announcements

• HW1 is due Friday!

3 Questions?

Any questions from the minilectures or the quiz? (Group Theory 101; Primality Testing)

4 Miller-Rabin Algorithm

[A bit of lecture to introduce the Miller-Rabin Algorithm. Summary below.]
The main idea behind the Miller-Rabin algorithm is the fact (which is not obvious) that:

• If n is prime, then there are exactly two square roots of 1 in Z∗
n, +1 and −1.

• If n is an odd composite number, not the power of a prime, then there are more than
two square roots of 1 in Z∗

n.

The following Proposition is true, check out the lecture notes (or think about it yourself
if you finish the group work early!) for more details.

Proposition 1. If n is prime, then there are exactly two square roots of 1 in Z∗
n, +1 and

−1.

Consider the following way to generate a list of numbers, using n. (It should not be
obvious at this point why we are doing this).

Procedure for generating some numbers

• Write n− 1 = 2km where m is odd.

• Choose x ∈ {1, . . . , n− 1} uniformly at random.

• Consider the list of numbers xm, x2m, x22m, . . . , x2km mod n.

In the following group work, we’ll play around with some examples.

1

4.1 Group work: Exploring this list of numbers

Group Work

1. Figure out how to generate these lists automatically. Here are ways you can do
that.

• Go to

https://web.stanford.edu/~marykw/CS265Class3.html

This just runs a python script that takes x and n and generates this list.

• If you want to do it yourself, there’s some python code at the end of this
document that you can copy and paste.

Make sure that you can replicate the example we saw with x = 3, n = 21. You
should get 12, 18, 9.

2. Suppose that n is prime. What should you get as the last number generated in this
list? (Hint, Fermat’s little theorem). Verify your answer by trying it out.

3. Suppose that n is prime. What are the possible answers you could get as the second-
to-last number generated in this list? (Hint, Proposition 1). Verify your answer by
trying it out.

(Note: If you see the value “n − 1” show up in the widget, remember that this is
the same as “−1” mod n.)

4. Suppose that n = 561. (Recall that this is the first Carmichael number—so it’s not
prime, but for any x with gcd(x, n) = 1, we have xn−1 = 1 mod n.)

• Choose x = 23. What do you get? Why does this answer prove to you that n
is not prime? (Hint, previous question).

• Choose x = 13. What do you get? Why does this answer prove to you that n
is not prime? (Hint, Prop. 1).

• Choose x = 63. What do you get? Why does this answer prove to you that n
is not prime? (Hint, Fermat’s little theorem).

• Choose x = 458. Does this answer prove to you that n is not prime? Why or
why not?

5. Come up with a candidate randomized algorithm to test primality based on these
observations. You can try out some other examples to test it.

6. If you have time, try to prove that your candidate randomized algorithm works!

4.2 Group Work: Analyzing the Miller-Rabin Test

[A bit of lecture to state the Miller-Rabin test; see lecture notes for more details, and the
relevant parts are summarized below.]

2

https://web.stanford.edu/~marykw/CS265Class3.html

The relevant part of the test1 is:

Relevant part of Miller-Rabin Test

• Generate the list of k numbers as above.

• If the last number is not 1, output “composite!”

• If there’s a number that’s not equal to ±1, but the next number is equal to 1,
output “composite!”

• Otherwise, output “prime!”

[On slides/whiteboard, we will define the following set S and make the following claims.]

Define
S =

{
y ∈ Z∗

n : y2
bm = ±1 mod n

}
,

where b is the largest value i < k so that there exists a z for which z2
im = −1 mod n. We

made the following claims:

• Claim 1: For any x so that the algorithm says “Prime!”, x ∈ S.

• Claim 2: S is a subgroup of Z∗
n.

• Claim 3: If n is odd, composite, and not a prime power, S ̸= Z∗
n.

Group Work

Assuming Claims 1,2, and 3, prove the following:

If n is odd, composite, and not a prime power, the algorithm above says “Composite!”
with probability at least 1/2.

(We have already waved our hands about this in class. What you’re supposed to be
doing now is explaining to each other. Try to write down a formal proof to see how all
the pieces fit together.)

Hint: Recall that if S is a proper subgroup of Z∗
n, then by Lagrange’s theorem, |S| ≤ |Z∗

n|
2
.

If you have time, think about the following:

• Prove Proposition 1. (Hint: use the fact that Z∗
n is cyclic).

• Prove Claim 3. (Disclaimer: this is tricky!) (Hint: by the assumptions on n, we
can write n = s · t where s and t are relatively prime. The Chinese Remainder
Theorem implies the following. For any s and t that are relatively prime and for

1See lecture notes for the actual algorithm

3

any x ∈ Z∗
n, there exists a y ∈ Zn so that y = x mod s and y = 1 mod t. Show

that such a y satisfies y ∈ Z∗
n but y ̸∈ S.)

5 Useful Code

If you don’t want to use Mary’s web widget thing, here’s some Python code to generate the
list of numbers, given x and n:

def generateList(x,n):

if n <= 1:

return []

generate k and m

k = 0

m = n-1

while m % 2 == 0:

k += 1

m = m/2

now generate x^m, x^(2m), x^(4m), ..., x^(2^k m) mod n

ret = []

for i in range(k+1):

y = x**int(m) % n

for j in range(i):

y = y**2 % n

ret.append(int(y))

return ret

4

	Warm-Up
	Announcements
	Questions?
	Miller-Rabin Algorithm
	Group work: Exploring this list of numbers
	Group Work: Analyzing the Miller-Rabin Test

	Useful Code

