Class 4: Agenda, Questions, and Links

1 Warm-Up

Suppose you flip a p-biased coin n times. What does Markov's inequality tell you about the probability that you see more than $2 p n$ heads? What does Chebyshev's inequality tell you about that probability?

2 Announcements

- HW1 due tomorrow!
- HW2 out now!

3 Questions?

Any questions from the minilectures or warmup? (Markov and Chebyshev's inequalities).

4 Sampling-Based Median

Sampling-Based Median Algorithm

Median:(A list S of n distinct numbers, where n is odd):

1. Let $t=n^{3 / 4}$. Sample $R=\left\{r_{1}, \ldots, r_{t}\right\} \subseteq S$ by drawing r_{i} uniformly at random, independently.
2. Sort R in time $O(t \log t)$. Henceforth, assume that $r_{1} \leq r_{2} \leq \cdots \leq r_{t}$.
3. Let $a=r_{t / 2-\sqrt{n}}, b=r_{t / 2+\sqrt{n}}$.
4. Let $N_{<a}$ and $N_{>b}$ denote the number of elements in S less than a and greater than b respectively.
5. Let $T=\{x \in S: a \leq x \leq b\}$. Construct T, and compute $N_{<a}$ and $N_{>b}$, in time $O(n)$.
6. If $|T|<4 t$, sort T in time $O(t \log t)$; otherwise output FAIL.
7. If $N_{<a}, N_{>b} \leq n / 2$ (aka, $\left.\operatorname{median}(S) \in T\right)$:

- Return the i 'th smallest element of T, where $i=(n+1) / 2-N_{<a}$.

8. Otherwise, output FAIL.
[We'll see an example on a slide; this slide is posted on the course website.]
[Note: Above there should be some floors or ceilings or something. Don't worry about it, and ignore off-by-one errors throughout this class.]

5 Analyzing the sampling-based median algorithm

You will analyze this algorithm in group work.

Group Work

Note: Throughout this group work, don't worry about \leq vs $<$, or whether or not something is true up to ± 1, or anything small like that.

1. Make sure that you all understand the algorithm. Pseudo-code is above, and the one-slide example is available on the course website (cs265.stanford.edu), in the class-by-class resources for Class 4. Ask/answer any questions that you have amongst yourselves, and flag down a member of the course staff if you still have questions.
2. Suppose that you could show that:

- with probability ≥ 0.9, the median of S is in the list T; and
- with probability $\geq 0.9,|T|<4 t$.

Explain (to each other) why these two things would imply that the algorithm returns the correct answer with probability ≥ 0.8. And if it does not return the median then it returns FAIL.
3. Convince yourself that this algorithm uses at most $O(n)$ operations. What is the leading constant in this big-Oh notation? (Assuming that "sample a random element of $S^{\prime \prime}$, and comparing two numbers are each single operations).
4. In the following parts, you will show that the median of S is in T, with probability at least 0.9. Let m be the median of S. Consider two events:

- $\left|\left\{r_{i} \in R: r_{i}<m\right\}\right|<\frac{t}{2}+\sqrt{n}$
- $\left|\left\{r_{i} \in R: r_{i}>m\right\}\right|<\frac{t}{2}+\sqrt{n}$
(a) Explain why, if both of these events hold, then median $(S) \in T$.
(b) Use Chebyshev's inequality to bound the probability that the first event does not hold. (Hint: let X_{i} be the indicator random variable that is 1 iff $r_{i} \leq m$, and consider $\sum_{i} X_{i}$).
(c) Convince yourself that the same argument will work for the second event, and write a statement of the form:

$$
\operatorname{Pr}[\operatorname{median}(S) \in T] \geq 1-\ldots-
$$

5. Now, we turn our attention to the probability that $|T|<4 t$.
(a) Explain why it is sufficient to show that a is not one of the smallest $n / 2-2 t$ elements of S, and b is not one of the largest $n / 2+2 t$ elements of S.
(b) Use Chebyshev's inequality to bound the probability that a is not one of the smallest $n / 2-2 t$ elements of S. (Hint: Consider the indicator random variable Y_{i} that is 1 if r_{i} is in the smallest $n / 2-2 t$ elements of S. Argue that a is one of the smallest $n / 2-2 t$ elements of S iff $\sum_{i} Y_{i} \geq t / 2-\sqrt{n}$ (why?) and apply Chebyshev's inequality.)
(c) Convince yourself that the analogous statement for b, and write a statement of the form:

$$
\operatorname{Pr}[|T|<4 t] \geq 1-\ldots
$$

