Class 5: Agenda and Questions

1 Warm-Up

Suppose you roll a 6 -sided die n times. Use a Chernoff bound to bound the probability that you see more than $\frac{1+\delta}{6} \cdot n$ threes, where $\delta \in(0,1)$. What bound do you get as a function of n ?

Group Work: Solutions

Let X be the number of threes that you see. Let X_{i} be an indicator random variable that is 1 iff you roll a three on roll i. Then $X=\sum_{i=1}^{n} X_{i}$, and $\mathbb{E} X_{i}=1 / 6$. Thus, a Chernoff bound (for example, one of the simplified ones) says that

$$
\operatorname{Pr}\left[X \geq(1+\delta) \cdot \frac{n}{6}\right] \leq \exp \left(-\mu \delta^{2} / 3\right)=\exp \left(-n \delta^{2} / 18\right)=\exp \left(-\Omega\left(n \delta^{2}\right)\right)
$$

2 Announcements

- HW2 is due Friday!
- Friday is also the add-drop deadline; we'll get HW1 back to you before then.

3 Questions?

Any questions from the minilectures or warmup? (Moment generating functions; Chernoff bounds)

4 Randomized Routing

[Discussion with setup; the summary is below and also in more detail in the lecture notes.]
The goal is the following. Suppose we want to design a network with M nodes and a routing protocol in such a way that 1) we have relatively few edges in the network (ie $O(M)$ or $O(M \log M)$), and 2) if each node has a message to send to a some other node, the messages can all be routed to their destinations in a timely manner without too much congestion on the edges. More formally:

- Let H be the n-dimensional hypercube. There are 2^{n} vertices, each labeled with an element of $\{0,1\}^{n}$. Two vertices are connected by an edge if their labels differ in only one place. For example, 0101 is adjacent to 1101.
- Each vertex i has a packet (also named i), that it wants to route to another vertex $\pi(i)$, where $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a permutation.
- Each edge can only have one packet on it at a time (in each direction). Time is discrete (goes step-by-step), and the packets queue up in a first-in-first-out queue for each (directed) edge.

4.1 Group work: Bit-fixing scheme

Consider the following bit-fixing scheme: To send a packet i to a node j, we turn the bitstring i into the bitstring j by fixing each bit one-by-one, starting with the left-most and moving right. For example, to send

$$
i=001010
$$

to

$$
j=101001,
$$

we'd send

$$
i=001010 \rightarrow 101010 \rightarrow 101000 \rightarrow 101001=j .
$$

Group Work

1. Suppose that every packet is trying to get to $\overrightarrow{0}$ (the all-zero string). (Yes, I know that this isn't a permutation). Show that if every packet used the bit-fixing scheme (or, any scheme at all) to get to its destination, the total time required is at least $\left(2^{n}-1\right) / n$ steps.
Hint: How many packets can arrive at $\overrightarrow{0}$ at any one timestep? How many packets need to arrive there?
2. Suppose that n is even. Come up with an example of a permutation π where the bit-fixing scheme requires at least $\left(2^{n / 2}-1\right) /(n / 2)$ steps.
Hint: Consider what happens if $(\vec{a}, \vec{b}) \in\{0,1\}^{n}$ wants to go to (\vec{b}, \vec{a}), where $\vec{a}, \vec{b} \in$ $\{0,1\}^{n / 2}$, and use part 1.
3. If you still have time, think about the following: what happens if each packet i wants to go to a uniformly random destination $\delta(i)$, under the bit-fixing scheme? Will it be as bad as the scheme you came up with in part 2? Or will it finish in closer to $O(n)$ steps?

Group Work: Solutions

1. There are $2^{n}-1$ packets that want to get to zero (not counting the packet that starts at zero, which is already there). At each timestep, at most n packets can go to zero, since there are only n edges coming out. Therefore we need at least $\left(2^{n}-1\right) / n$ timesteps.
2. As in the hint, suppose that we construct a permutation π that sends (\vec{a}, \vec{b}) to (\vec{b}, \vec{a}). Then the bit-fixing scheme on $(\vec{a}, \overrightarrow{0})$ first proceeds by sending $(\vec{a}, \overrightarrow{0})$ to $\overrightarrow{0}$, for any \vec{a}. But there are $2^{n / 2}$ choices for \vec{a}, and so by the previous part, this will take time at least $\left(2^{n / 2}-1\right) /(n / 2)$.

4.2 A useful lemma

[Discussion explaining the following lemma.]
Lemma 1. Let $D(i)$ denote the delay in the i 'th packet. That is, this is the number of timesteps it spends waiting.

Let $P(i)$ denote the path that packet i takes under the bit-fixing map. (So, $P(i)$ is a collection of directed edges).

Let $N(i)$ denote the number of other packets j so that $P(j) \cap P(i) \neq \emptyset$. That is, at some point j wants to traverse an edge that i also wants to traverse, in the same direction, although possibly at some other point in time.

Then $D(i) \leq N(i)$.

Group Work

Let $\delta:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a completely random function (not necessarily a permutation). That is, for each $i, \delta(i)$ is a uniformly random element of $\{0,1\}^{n}$, and each $\delta(i)$ is independent.
In this group work, you will analyze how the bit-fixing scheme performs when packet i wants to go to node $\delta(i)$.
Fix some special node/packet i. Let $D(i)$ and $P(i)$ be as above. Fix $\delta(i)$ (and hence $P(i)$, since we have committed to the bit-fixing scheme). But let's keep $\delta(j)$ random for all $j \neq i$. (Formally, we will condition on an outcome for $\delta(i)$; since $\delta(i)$ is independent from all of the other $\delta(j)$, this won't affect any of our calculations).
Let X_{j} be the indicator random variable that is 1 if $P(i)$ intersects $P(j)$.

1. Assume that we are using the bit-fixing scheme. Argue that $\mathbb{E}\left[\sum_{j} X_{j}\right] \leq n / 2$.

Hint: In expectation, how many directed edges are in all of the paths $P(j)$ taken
together (with repetition)? Show that this is at most $2^{n} \cdot n / 2$. Then argue that the expected number of paths $P(j)$ that any single directed edge e is in is $1 / 2$. Finally, bound $\sum_{j} X_{j} \leq \sum_{e \in P(i)}$ (number of paths $P(j)$ that e is in) and use linearity of expectation and the fact that $|P(i)| \leq n$ to bound $\mathbb{E}\left[\sum_{j} X_{j}\right]$.
2. Use a Chernoff bound to bound the probability that $\sum_{j} X_{j}$ is larger than $10 n$.
3. Use your answer to the previous question to bound the probability that the bitfixing scheme takes more than $11 n$ timesteps to send every packet i to $\delta(i)$, assuming that the destinations $\delta(i)$ are completely random.
Hint: Lemma 1.
If you still have time, think about the following:
4. However, the destinations are not random! They are given by some worst-case permutation π. Using what you've discovered above for random destinations, develop a randomized routing algorithm that gets every packet where it wants to go, with high probability, in at most $22 n$ steps.
Hint: The fact that $22 n$ is two times $11 n$ is not an accident.

Group Work: Solutions

1. The number of edges in all of the paths $P(j)$ is, in expectation,
$\mathbb{E}\left[\sum_{j} \sum_{e} \mathbf{1}[e \in P(j)]=\sum_{j} \mathbb{E}[\right.$ length of path from j to $\delta(j)]=\sum_{j} n / 2 \leq 2^{n} \cdot n / 2$.
This is because, for any j, the length of the bit-fixing path from j to $\delta(j)$ is just the number of coordinates on which j and $\delta(j)$ differ. But in expectation this is $n / 2$, since the probability that they differ on any single coordinate is $1 / 2$. We also used the fact that there are $2^{n}-1 \leq 2^{n}$ things in the sum.
Thus, on average, every directed edge is in $1 / 2$ paths (since there are $n \cdot 2^{n}$ directed edges). By symmetry, the expected number of paths that any edge e must be in is $1 / 2$.
Finally,

$$
\mathbb{E}\left[\sum_{j} X_{j}\right] \leq \mathbb{E} \sum_{e \in P(i)} \sum_{j} \mathbf{1}[e \in P(j)]
$$

and by the above, $\mathbb{E} \sum_{j} \mathbf{1}[e \in P(j)]$ (which is the expected number of paths that e is in) is at most $1 / 2$. Thus,

$$
\mathbb{E}\left[\sum_{j} X_{j}\right] \leq \sum_{e \in P(j)} \frac{1}{2} \leq \frac{n}{2}
$$

2. We have $\mathbb{E}\left[\sum_{j} X_{j}\right] \leq n / 2=: \mu$ by the previous part. By a Chernoff bound,

$$
\operatorname{Pr}\left[\sum_{j} X_{j} \geq 10 n\right]=\operatorname{Pr}\left[\sum_{j} X_{j} \geq 20 \mu\right] \leq 2^{-20 \mu}=2^{-10 n}
$$

3. The lemma says that the number of timesteps that packet i is delayed is at most the number of paths that cross $P(i)$, which is $\sum_{j} X_{j}$ using the notation from the previous problem. We just showed that this was at most $10 n$ with probability $2^{-10 n}$. If this were to happen for all 2^{n} packets i, then the total time would be at most $11 n$: at most n steps actually moving, and at most $10 n$ steps delayed. We can union bound over all 2^{n} packets, to conclude that this indeed happens with probability at least $1-2^{n} 2^{-10 n}=1-2^{-9 n}$.
4. Route to a random $\delta(i)$. Then route from $\delta(i)$ to $\pi(i)$. The total number of steps is at most $22 n$ with high probability. Hooray!
