Class 5: Agenda and Questions

1 Warm-Up

Suppose you roll a 6-sided die *n* times. Use a Chernoff bound to bound the probability that you see more than $\frac{1+\delta}{6} \cdot n$ threes, where $\delta \in (0, 1)$. What bound do you get as a function of n?

Group Work: Solutions

Let X be the number of threes that you see. Let X_i be an indicator random variable that is 1 iff you roll a three on roll *i*. Then $X = \sum_{i=1}^{n} X_i$, and $\mathbb{E}X_i = 1/6$. Thus, a Chernoff bound (for example, one of the simplified ones) says that

$$\Pr[X \ge (1+\delta) \cdot \frac{n}{6}] \le \exp(-\mu\delta^2/3) = \exp(-n\delta^2/18) = \exp(-\Omega(n\delta^2)).$$

2 Announcements

- HW2 is due Friday!
- Friday is also the add-drop deadline; we'll get HW1 back to you before then.

3 Questions?

Any questions from the minilectures or warmup? (Moment generating functions; Chernoff bounds)

4 Randomized Routing

[Discussion with setup; the summary is below and also in more detail in the lecture notes.]

The goal is the following. Suppose we want to design a network with M nodes and a routing protocol in such a way that 1) we have relatively few edges in the network (ie O(M) or $O(M \log M)$), and 2) if each node has a message to send to a some other node, the messages can all be routed to their destinations in a timely manner without too much congestion on the edges. More formally:

- Let H be the *n*-dimensional hypercube. There are 2^n vertices, each labeled with an element of $\{0, 1\}^n$. Two vertices are connected by an edge if their labels differ in only one place. For example, 0101 is adjacent to 1101.
- Each vertex *i* has a packet (also named *i*), that it wants to route to another vertex $\pi(i)$, where $\pi: \{0,1\}^n \to \{0,1\}^n$ is a permutation.
- Each edge can only have one packet on it at a time (in each direction). Time is discrete (goes step-by-step), and the packets queue up in a first-in-first-out queue for each (directed) edge.

4.1 Group work: Bit-fixing scheme

Consider the following *bit-fixing scheme:* To send a packet i to a node j, we turn the bitstring i into the bitstring j by fixing each bit one-by-one, starting with the left-most and moving right. For example, to send

$$i = 001010$$

to

j = 101001,

we'd send

 $i = 001010 \rightarrow 101010 \rightarrow 101000 \rightarrow 101001 = j.$

Group Work

1. Suppose that every packet is trying to get to $\vec{0}$ (the all-zero string). (Yes, I know that this isn't a permutation). Show that if every packet used the bit-fixing scheme (or, any scheme at all) to get to its destination, the total time required is at least $(2^n - 1)/n$ steps.

Hint: How many packets can arrive at $\vec{0}$ at any one timestep? How many packets need to arrive there?

2. Suppose that n is even. Come up with an example of a permutation π where the bit-fixing scheme requires at least $(2^{n/2} - 1)/(n/2)$ steps.

Hint: Consider what happens if $(\vec{a}, \vec{b}) \in \{0, 1\}^n$ wants to go to (\vec{b}, \vec{a}) , where $\vec{a}, \vec{b} \in \{0, 1\}^{n/2}$, and use part 1.

3. If you still have time, think about the following: what happens if each packet i wants to go to a *uniformly random* destination $\delta(i)$, under the bit-fixing scheme? Will it be as bad as the scheme you came up with in part 2? Or will it finish in closer to O(n) steps?

Group Work: Solutions

- 1. There are $2^n 1$ packets that want to get to zero (not counting the packet that starts at zero, which is already there). At each timestep, at most n packets can go to zero, since there are only n edges coming out. Therefore we need at least $(2^n 1)/n$ timesteps.
- 2. As in the hint, suppose that we construct a permutation π that sends (\vec{a}, \vec{b}) to (\vec{b}, \vec{a}) . Then the bit-fixing scheme on $(\vec{a}, \vec{0})$ first proceeds by sending $(\vec{a}, \vec{0})$ to $\vec{0}$, for any \vec{a} . But there are $2^{n/2}$ choices for \vec{a} , and so by the previous part, this will take time at least $(2^{n/2} - 1)/(n/2)$.

4.2 A useful lemma

[Discussion explaining the following lemma.]

Lemma 1. Let D(i) denote the delay in the *i*'th packet. That is, this is the number of timesteps it spends waiting.

Let P(i) denote the path that packet i takes under the bit-fixing map. (So, P(i) is a collection of directed edges).

Let N(i) denote the number of other packets j so that $P(j) \cap P(i) \neq \emptyset$. That is, at some point j wants to traverse an edge that i also wants to traverse, in the same direction, although possibly at some other point in time.

Then $D(i) \leq N(i)$.

Group Work

Let $\delta : \{0,1\}^n \to \{0,1\}^n$ be a completely random function (not necessarily a permutation). That is, for each $i, \delta(i)$ is a uniformly random element of $\{0,1\}^n$, and each $\delta(i)$ is independent.

In this group work, you will analyze how the bit-fixing scheme performs when packet i wants to go to node $\delta(i)$.

Fix some special node/packet *i*. Let D(i) and P(i) be as above. Fix $\delta(i)$ (and hence P(i), since we have committed to the bit-fixing scheme). But let's keep $\delta(j)$ random for all $j \neq i$. (Formally, we will condition on an outcome for $\delta(i)$; since $\delta(i)$ is independent from all of the other $\delta(j)$, this won't affect any of our calculations).

Let X_j be the indicator random variable that is 1 if P(i) intersects P(j).

1. Assume that we are using the bit-fixing scheme. Argue that $\mathbb{E}[\sum_{j} X_{j}] \leq n/2$. *Hint:* In expectation, how many directed edges are in all of the paths P(j) taken together (with repetition)? Show that this is at most $2^n \cdot n/2$. Then argue that the expected number of paths P(j) that any single directed edge e is in is 1/2. Finally, bound $\sum_j X_j \leq \sum_{e \in P(i)}$ (number of paths P(j) that e is in) and use linearity of expectation and the fact that $|P(i)| \leq n$ to bound $\mathbb{E}[\sum_j X_j]$.

- 2. Use a Chernoff bound to bound the probability that $\sum_{i} X_{j}$ is larger than 10*n*.
- 3. Use your answer to the previous question to bound the probability that the bitfixing scheme takes more than 11n timesteps to send every packet *i* to $\delta(i)$, assuming that the destinations $\delta(i)$ are completely random.

Hint: Lemma 1.

If you still have time, think about the following:

4. However, the destinations are not random! They are given by some worst-case permutation π . Using what you've discovered above for random destinations, develop a randomized routing algorithm that gets every packet where it wants to go, with high probability, in at most 22n steps.

Hint: The fact that 22n is two times 11n is not an accident.

Group Work: Solutions

1. The number of edges in all of the paths P(j) is, in expectation,

$$\mathbb{E}\left[\sum_{j}\sum_{e}\mathbf{1}\left[e \in P(j)\right] = \sum_{j}\mathbb{E}\left[\text{length of path from } j \text{ to } \delta(j)\right] = \sum_{j}n/2 \le 2^{n} \cdot n/2.$$

This is because, for any j, the length of the bit-fixing path from j to $\delta(j)$ is just the number of coordinates on which j and $\delta(j)$ differ. But in expectation this is n/2, since the probability that they differ on any single coordinate is 1/2. We also used the fact that there are $2^n - 1 \leq 2^n$ things in the sum.

Thus, on average, every directed edge is in 1/2 paths (since there are $n \cdot 2^n$ directed edges). By symmetry, the expected number of paths that any edge e must be in is 1/2.

Finally,

$$\mathbb{E}\left[\sum_{j} X_{j}\right] \leq \mathbb{E}\sum_{e \in P(i)} \sum_{j} \mathbf{1}[e \in P(j)],$$

and by the above, $\mathbb{E} \sum_{j} \mathbf{1}[e \in P(j)]$ (which is the expected number of paths that e is in) is at most 1/2. Thus,

$$\mathbb{E}\left[\sum_{j} X_{j}\right] \le \sum_{e \in P(j)} \frac{1}{2} \le \frac{n}{2}$$

2. We have $\mathbb{E}[\sum_{j} X_{j}] \leq n/2 =: \mu$ by the previous part. By a Chernoff bound,

$$\Pr[\sum_{j} X_j \ge 10n] = \Pr[\sum_{j} X_j \ge 20\mu] \le 2^{-20\mu} = 2^{-10n}.$$

- 3. The lemma says that the number of timesteps that packet *i* is delayed is at most the number of paths that cross P(i), which is $\sum_j X_j$ using the notation from the previous problem. We just showed that this was at most 10*n* with probability 2^{-10n} . If this were to happen for all 2^n packets *i*, then the total time would be at most 11*n*: at most *n* steps actually moving, and at most 10*n* steps delayed. We can union bound over all 2^n packets, to conclude that this indeed happens with probability at least $1 - 2^n 2^{-10n} = 1 - 2^{-9n}$.
- 4. Route to a random $\delta(i)$. Then route from $\delta(i)$ to $\pi(i)$. The total number of steps is at most 22n with high probability. Hooray!