
CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #6: Balls in Bins and Power-of-Two-Choices

Gregory Valiant*, updated by Mary Wootters

October 8, 2023

1 Introduction
Many phenomenon can be modeled via the process of tossing n balls, uniformly at random, into one
of m different “bins”, and then examining certain properties of the resulting allocation of balls to
bins. For example, the coupon collector problem can be reformulated in this framework as the fol-
lowing question: what is the minimum value of n, as a function of m, such that we expect there to be
zero empty bins after tossing the n balls? Similarly, nearly all questions regarding the construction
or analysis of hashing schemes (including Bloom filters that you may have seen in other courses)
can trivially be restated as a balls-in-bins problem.

Example 1. In case you haven’t formally seen it before, the “birthday paradox” is the question of
how small n can be, as a function of the number of bins, m, such that we expect a pair of balls to
end up in the same bin. The probability that the first two balls do not collide is m−1

m
, similarly the

probability that there are no collisions within the first three balls is (m−1)(m−2)
m2 , and in general the

probability that none of the n balls collide is

(m− 1)(m− 2) . . . (m− n+ 1)

mn−1
.

Hence if m = 365, and birthdays are randomly distributed over the days of the year, then working
through the math we get that as long as we have n ≥ 23 people, there is at least a 0.5 probability
that a pair of people share a birthday.

In these lecture notes, we will mainly focus on analyzing the maximum bin load (i.e. the max-
imum number of balls that end up in any single bin, and will see the surprising “power-of-two-
choices” load balancing approach, which significantly reduces the expected maximum bin load by
giving each ball the power to choose a bin between two random options.

Proposition 2. Consider tossing n balls into n bins. There is a constant c such that with high
probability, the maximum load will be at most c log n/ log log n, for sufficiently large n.

*©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1

Proof. The high-level approach will be to show that for any k > 3 log n/ log log n,

Pr[bin 1 has load exactly k] = o(1/n2),

and hence we can union bound of the n bins, and the < n values of k ∈ {3 log n/ log log n, 1 +
3 log n/ log log n, . . . , n}.

Pr[bin 1 has load exactly k] ≤
(
n

k

)
(1/n)k(1− 1/n)n−k ≤ nk

k!
(1/n)k ≤ 1

k!
.

Using the fact that k! ≥ (k/e)k, if k = c logn
log logn

, for c > e, then

1/k! ≤
(

log n

log log n

)−c logn/ log logn

≤ e−c(log logn−log log logn) logn/ log logn = e−c logn+c logn log log logn
log logn .

Since the second term in the exponent is o(log n), this entire expression is at least n−c+o(1). As the
load can be at most n, by doing a union bound over all k ≥ c logn

log logn
we get,

Pr
[
bin 1 has load > k

]
≤ n−c+1+o(1).

Taking any c > 3 yields that even after a union bound over the n bins and < n values of k between
c logn
log logn

and n, the probability that the maximum load is at least c logn
log logn

is o(1), as desired.

Before proving that the guarantees of Proposition 2 are fairly tight, in the sense that we do expect
the maximum load to be ≈ log n/ log log n, we will take a brief detour and discuss the Poisson
distribution.

2 The Poisson Distribution
Many of you have encountered the Poisson distribution before in other classes. The Poisson distri-
bution parameterized by a non-negative value λ, is typically denoted Poi(λ). Below are some of the
crucial properties that are worth remembering:

1. For X ← Poi(λ) and any integer k ≥ 0, Pr[X = k] = e−λλk

k!
.

2. An alternate definition of the Poisson distribution is the limit, as n → ∞, of the binomial
distribution corresponding to n independent tosses of a coin that lands heads with probability
λ/n.

3. Both of the above two definitions yield that for X ← Poi(λ), E[X] = Var[X] = λ.

4. For independent random variables X and Y with X ← Poi(λ1) and Y ← Poi(λ2), the sum
X + Y is distributed according to Poi(λ1 + λ2).

Poisson distributions satisfy quite strong tail bounds, which can be proved via their moment-
generating function.

2

Fact 3. Poisson distributions satisfy strong tail bounds: Letting X ← Poi(λ), for any c > 0,

Pr[|X − λ| ≥ c] ≤ 2e−
c2

2(c+λ) .

One of the most useful properties of Poisson distributions is summarized in the following theo-
rem.

Theorem 1. Suppose we draw k ← Poi(n), and then toss k balls uniformly at random into m bins,
then the number of balls in bin 1, bin 2, etc, are all independent, distributed according to Poi(n/m).

Proof. For clarity, we give the proof in the case when there are just m = 2 bins, though the proof
of the more general statement is essentially identical. Letting X1, X2 denote the number of balls in
each bin, we have that, for any integers i, j,

Pr[X1 = i,X2 = j] = Pr[k = i+ j] Pr[Binomial(i+ j, 1/2) = i],

since this event can only occur if the total number of balls that were tossed is k = i + j, in which
case the probability that bin 1 gets i of them is given by the binomial distribution, since the balls are
tossed independently into one of the two bins. Simplifying, we get

Pr[k = i+ j] Pr[Binomial(i+ j, 1/2) = i] =
e−nni+j

(i+ j)!

(i+ j)!

j!i!

1

2i+j
=

e−n/2(n/2)i

i!
· e

−n/2(n/2)j

j!

= Pr[Poi(n/2) = i] · Pr[Poi(n/2) = j],

where Pr[Poi(λ) = i] denotes the probability that a Poisson random variable with expectation λ is
equal to i. We now use this expression to calculate the probability that X1 = i. Note that by the law
of total probability,

Pr[X1 = i] =
∞∑
j=0

Pr[X1 = i,X2 = j] =
∞∑
j=0

Pr[Poi(n/2) = i] · Pr[Poi(n/2) = j]

= Pr[Poi(n/2) = i] ·
∞∑
j=0

Pr[Poi(n/2) = j] = Pr[Poi(n/2) = i].

Similarly, Pr[X2 = j] = Pr[Poi(n/2) = j], and hence the number of balls in each bin is distributed
according to Poi(n/2). We will now complete the proof by showing that the number of balls in the
two bins is also independent. To do this, we calculate the conditional probability and show that it is
equal to the marginal probability,

Pr[X1 = i|X2 = j] =
Pr[X1 = i,X2 = j]

Pr[X2 = j]
=

Pr[Poi(n/2) = i] · Pr[Poi(n/2) = j]

Pr[Poi(n/2) = j]
= Pr[Poi(n/2) = i].

What does the above theorem really mean? If you flip exactly 100 coins, the number of heads and
tails will be completely determined by each other (e.g. heads = 100 − tails). The above theorem
says that if you pick n← Poi(100), then flip n coins, the number of heads and tails are independent,
both distributed according to Poi(50). The nice thing is that this holds even though Poi(100) is very

3

tightly distributed about 100 (since the expectation is 100, and the standard deviation is 10, and the
probability it deviates from its expectation by more than c standard deviations is inverse exponential
in c, as given in Fact 3.)

The power of Theorem 1 is that if we toss a Poisson number of balls, we end up with independent
bin loads. And, analyzing independent random variables is usually pretty easy. (We can also apply
tools like Chernoff bounds to analyze properties of these independent random variables, and we
would not be able to apply Chernoff bounds to sums of dependent random variables). Additionally,
since the Poisson distribution is concentrated about its expectation, we can relate this “Poissonized”
setting back to the setting where we toss a deterministic number of balls. We now give two examples
of this general of technique.

Proposition 4. (Coupon Collector) Assuming we get a uniformly random one of n distinct coupons
each day, letting X denote the number of days until we see at least one of each coupon, we have that
for any (possibly negative) constant c,

lim
n→∞

Pr[X ≥ n log n+ cn] = 1− e−e−c

.

-10 -5 0 5 10

0

0.5

1

Figure 1: Plot of 1− e−e−c as a function of c, illustrating that the time until all coupons are collected
is sharply concentrated about n log n.

Proof. Suppose the number of coupons we will consider is k ← Poi(n log n + cn), and note that
the number of coupons of each type will be independent, distributed according to Poi(c + log n).
Since Pr[Poi(λ) = 0] = e−λ, the probability we see at least one of each type of coupon is (1 −
e−(c+logn))n = (1 − e−c/n)n, which tends towards e−e−c in the limit as n → ∞ using the fact that
(1− x)1/x → e−1 as x→ 0.

To relate this to the non-Poissonized setting, we take the following 2 steps: 1) We argue that the
probability of being done after N coupons can change by only by a subconstant amount if we give or
take an extra n0.9 random coupons, and 2) Since Poisson random variables are tightly concentrated
about their expectation, Poi(n log n + cn) deviates from its expectation by n0.9 with subconstant
probability.

For the first part, note that Pr[X > n log n + cn + n0.9] ≤ Pr[X > n log n + cn] ≤ Pr[X >
n log n+ cn−n0.9]. How different can Pr[X > n log n+ cn+n0.9] and Pr[X > n log n+ cn−n0.9]
actually be? The difference in probability is at most the probability that, after getting n log n +
cn − n0.9 coupons, there is at least one coupon type we haven’t seen, which we then receive in our
next set of 2n0.9 coupons. However, even if there was just a single type of coupon that we haven’t
seen, the probability that this is in the next batch of 2n0.9 coupons is at most 2n0.9/n = o(1). Hence

4

Pr[X > n log n + cn + n0.9] = Pr[X > n log n + cn − n0.9] + o(1). To conclude, from the tail
bounds of Fact 3,

Pr[|k − (n log n+ cn)| ≥ n0.9] ≤ 2e−n1.8/O(n logn) = o(1).

[We could have also just used Chebyshev’s inequality to get this o(1) bounds, based on the variance
of the Poisson distribution.]

The proof of the following proposition, showing that Proposition 2 is tight, is a second example
of this Poissonization technique.

Proposition 5. Consider tossing n balls into n bins. With high probability, the maximum load will
be at least c log n/ log log n.

Proof. First, consider drawing k ← Poi(n/2), and then tossing k balls. By Theorem 1, each bin
load is independently drawn from Poi(1/2). Hence, the probability that at least one of the n bins
has load at least b is at least the probability that at least one has load exactly b, which is

1− (1− e−1/2(1/2)b

b!
)n ≥ 1− e−n

e−1/2(1/2)b

b! .

Analyzing the exponent, by Stirling’s approximation, log(b!) = b log b − b + O(log b) and hence
for b = c log n/ log log n, this term is c log n + o(log n). Thus for c < 1 the dominant term in the
exponent of the probability we are analyzing is −n/nc, which tends to −∞. Hence for any constant
c < 1, with probability 1− o(1), there will be a bin with load b in this Poissonized setting.

We now relate this Poissonized setting to the setting where exactly n balls are tossed. Because
the number of balls in each bin increases monotonically with the number of balls tossed (i.e. by
tossing additional balls, you can never decrease the number of balls in a bin), all we need to argue is
that with high probability, k ≤ n. By Chebyshev’s inequality,

Pr[k ≥ n] = Pr[|k − E[k]| ≥ n/2] ≤ Var[k]

(n/2)2
=

n/2

n2/4
= o(1).

(We could have also used Fact 3 for an even tighter, inverse exponential tail bound here.)

Note: At this point we have finished the material that goes with the before-class videos.
The notes below are for reference after class.

3 Power of Two Choices
Propositions 2 and 5 show that when n balls are tossed into n bins uniformly at random, with high
probability the maximum bin load is θ(logn

log logn
). Given that the average bin load is 1, one might

wonder whether there is an “easy” way to end up with an asymptotically smaller maximum bin load
without having the balls coordinated (i.e. ball i goes to bin i), or without the balls needing to look
at a bunch of bins (i.e. each ball looks through all the bins and goes into the first empty bin it finds).

As a bit of practical motivation/context for this question, the balls-in-bins random process is a
natural model of hashing, and there are number of practical allocation tasks that can be considered

5

via this model. For example, consider allocating tasks to processors, or choosing a server in a
network. At least in some of these settings, querying the objects in question to find a “free” one
might be fairly wasteful in terms of communication, or the time it takes to process these queries.
Hence a very simple randomized scheme would be ideal. Also, in many of these settings, it does
make sense to have the number of requests in a given time period (i.e. the number of balls, n)
approximately equal to the number of resources (i.e. the number of bins, m). For example, with
a machine at full utilization, it doesnt make sense to have a bunch of extra processors that aren’t
doing anything, and if we have far fewer processors than jobs requested, we will end up with a long
backlog.

The power of two choices is the surprising fact that, if each ball chooses 2 uniformly random bins,
and then goes into the less full bin (breaking ties arbitrarily), then the maximum bin load decreases
from θ(logn

log logn
) to θ(log log n). This influential insight was discovered by Michael Mitzenmacher [1]

around 2000, and has had a significant impact on both practice, and theory.

Theorem 2. Suppose we allocate n balls to n bins as follows: the balls are allocated one at a time,
and for each ball, two bins are selected uniformly at random, with the ball “choosing” the least full
out of these two options, breaking ties in any way. With high probability, the maximum bin load will
be at most log2 log n+O(1).

Before formally proving this theorem, we first sketch the proof. Let Bi denote the number of
bins that have at least i balls after all n balls are tossed. Trivially, B2 ≤ n

2
, since otherwise there

would be more than n balls. We will now use a bound on Bi to give a bound on Bi+1. Given that
B2 ≤ n/2 after all the balls are tossed, at any intermediate step of the algorithm, there will certainly
be at most n/2 bins with at least 2 balls. Let us bound B3 by bounding the number of balls that will
be the 3rd (or higher) ball to join a bin. For a ball to be the 3rd (or 4th, etc) ball in a bin, it must
be the case that both of its options had at least 2 balls. Hence, the probability that a ball becomes
the 3rd ball in a bin is at most (B2/n)

2, where the exponent of 2 is there because both bin choices
must be bad. Plugging in our bound of B2 ≤ n/2, we get that each ball will become the 3rd ball in
a bin with probability at most (1/2)2 = 1/4. For the time being, lets ignore the fact that the events
that different balls become a “3rd ball in a bin” are dependent. If they were independent, then, by a
Chernoff bound, we would expect that B3 ≤ n/4 + o(n) with high probability.

For the purpose of this sketch, lets ignore this o(n), and continue the argument. Assuming that,
at the end, at most B3 ≤ n/4 buckets have 3 or more balls, for a ball to end up as the 4th ball in
a bucket, it must have both its options having 3 or more balls, and the probability of this will be
(1/4)2, yielding that E[B4] ≈ n

24
, and we might expect B4 ≤ n/24 + o(n) with high probability. In

general, ignoring the little-o term, this reasoning argues that if Bi ≤ cn, then we expect Bi+1 ≤ c2n.
At what point does this end? Well suppose Bi ≪

√
n, then or each ball, the probability it is the

i + 1st ball in a bin will be at most 1/
√
n
2
< 1/n, and by a union bound, Bi+1 = 0 with some

reasonable probability.
Putting this all together, we have B2 ≈ 1

2
n, B3 ≈ 1

22
n, B4 ≈ 1

222
n, and in general, Bi ≈ 1

22i−2 n.
This expression will be 1 (certainly less than

√
n) when 22

i−2 ≈ n, which is precisely when i =
2 + log log n.

To end up with a formal proof, we need to modify the above sketch in two ways: first, we
obviously need to do some bookkeeping and keep track of the o(n) terms which we ignored. Second,
and more fundamentally, we need to be a little careful in how we use a Chernoff bound to get a
high-probability bound on Bi+1 in terms of a bound on Bi. After we analyze the randomness of

6

the choices of each ball to derive a bound on Bi, we cannot simply pretend that the balls have new
randomness in our analysis of Bi+1. All of the Bi’s are dependent on each other.

To help us handle this conditioning and still get a Chernoff-style bound, the following intuitive
lemma will be helpful. In the following lemma, you can think of Zi as the set of bin loads after the
first i balls have been tossed.

Lemma 6. Let X1, . . . , Xn be a set of 0/1 random variables, and let Z1, . . . , Zn be a set of random
variables such that Xi depends on Z1, . . . , Zi. Then if Pr[Xi = 1|Z1, . . . , Zi−1] ≤ p for all i, then
for any c,

Pr[
n∑

i=1

Xi ≥ c] ≤ Pr[Binomial(n, p) ≥ c].

Proof. (Sketch) Considering each Xi sequentially, it holds that the probability of Xi = 1 is less than
if Xi were an independent flip of a p-biased coin. The proof then follows by induction.

Using this lemma, it is possible to make the intuition sketched above go through. We omit the
formal proof in these notes—if you are curious, you can check out the proof in [1].

3.1 Beyond Two Choices
Given that choosing between two options is almost exponentially better than only having one choice—
log n/ log log n ≈ log n is much worse than log log n—you might wonder what happens if you get
three, or more choices? More choices helps, but not much—it just changes the exponent in the base
of the logarithm:

Theorem 3. Suppose we allocate n balls to n bins as follows: the balls are allocated one at a time,
and for each ball, d bins are selected uniformly at random, with the ball “choosing” the least full
out of these d options, breaking ties in any way. With high probability, the maximum bin load will
be at most logd log n+O(1) = log logn

log d
+O(1).

The proof of this theorem is analogous to the the case when d = 2, and it is worth sanity-checking
this for yourself by performing the proof sketch in this more general case.

It is also worth thinking about how tie-breaking rules might improve the maximum load. Perhaps
surprisingly, if you tie-break by putting the ball in the bucket with lower index, this does improve
the leading coefficient!

References
[1] Michael Mitzenmacher. The power of two choices in randomized load balancing. IEEE Trans-

actions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

7

