## Class 7: Agenda and Questions

## 1 Announcements

- HW3 due Friday


## 2 Warm-Up

## Group Work

Let $G=(V, E)$ be a weighted, undirected graph, on $n$ vertices with edge weights $w_{u v}$ on the edge $\{u, v\} \in E$. Let $d: V \times V \rightarrow \mathbb{R}$ be the associated graph metric.
Explain how to efficiently find and apply a map $f: V \rightarrow \mathbb{R}^{k}$, for $k=O\left(\log ^{2} n\right)$, so that

$$
\frac{\sum_{\{u, v\} \in E}\|f(u)-f(v)\|_{1}}{\sum_{\{u, v\} \in\binom{V}{2}}\|f(u)-f(v)\|_{1}} \leq O(\log n) \frac{\sum_{\{u, v\} \in E} d(u, v)}{\sum_{\{u, v\} \in\binom{V}{2}} d(u, v)}
$$

holds with high probability. Above, $\binom{V}{2}$ refers to the set of all unordered pairs $\{u, v\}$ for $u, v \in V$ and $u \neq v$.

## 3 Lecture Recap and Questions?

Any questions from the mini-lectures or pre-class-quiz? (Metric Embeddings; Bourgain's Embedding)

## 4 Sparsest Cuts

[Some slides; summary is below]
For a graph $G=(V, E)$, define

$$
\phi(G, S)=\frac{|E(S, \bar{S})|}{|S||\bar{S}|}
$$

and

$$
\phi(G)=\min _{S \subset V, S \neq \emptyset, V} \phi(G, S),
$$

where above $\bar{S}:=V \backslash S$ denotes the complement of $S$, and $E(S, \bar{S})$ denotes the set of edges that have one endpoint in $S$ and one endpoint in $\bar{S}$.

Intuitively, if $\phi(G, S)$ is small, then $S$ is pretty "disconnected" from $\bar{S}$. Notice that the denominator, $|S||\bar{S}|$, is the number of edges that would be between $S$ and $\bar{S}$ in the complete graph, so $\phi(G, S)$ is the fraction of possible edges between $S$ and $\bar{S}$ that actually exist in $G$.

Finding $S$ to minimize $\phi(G, S)$ is useful, for example, in clustering applications. However, it's also NP-hard. Today we'll see a randomized algorithm to find an $S$ so that $\phi(G, S)$ is approximately minimized. More precisely, we'll find $S$ so that $\phi(S, G) \leq O(\log n) \phi(G)$.

Question: How is this definition of $\phi(G)$ different than simply asking for the minimum cut? When might you prefer a sparsest cut to a min cut? (Recall we saw a randomized algorithm for the minimum cut back in Week 1...)

### 4.1 Connection to metrics

## Group Work

In this group work, you will show that

$$
\begin{equation*}
\phi(G)=\min _{f} \frac{\sum_{\{u, v\} \in E}\|f(u)-f(v)\|_{1}}{\sum_{\{u, v\} \in\binom{V}{2}}\|f(u)-f(v)\|_{1}}, \tag{1}
\end{equation*}
$$

where the minimum is over all functions $f: V \rightarrow \mathbb{R}^{k}$ for some $k$, so that $f$ takes on at least two distinct values. (This last bit is needed so that the denominator doesn't vanish).

1. Show that

$$
\phi(G)=\min _{f: V \rightarrow\{0,1\}} \frac{\sum_{\{u, v\} \in E}|f(u)-f(v)|}{\sum_{\{u, v\} \in\binom{V}{2}}|f(u)-f(v)|},
$$

where the minimum is over all functions $f: V \rightarrow\{0,1\}$ so that $f$ takes on both values 0 and 1. (The difference between this and the expression above is that $f$ maps to $\{0,1\}$ instead of $\mathbb{R}^{k}$ for some $k$ ).
Hint: Consider mapping functions $f$ to sets $S$ by the relationship $S=\{u: f(u)=$ $1\}$.
2. Think about why the above extends to show that

$$
\phi(G)=\inf _{f: V \rightarrow \mathbb{R}} \frac{\sum_{\{u, v\} \in E}|f(u)-f(v)|}{\sum_{\{u, v\} \in\binom{V}{2}}|f(u)-f(v)|},
$$

where now the minimum is over $f: V \rightarrow \mathbb{R}$ instead of $f: V \rightarrow\{0,1\}$.
(Don't worry about a formal proof here, just kind of convince yourself intuitively that this is true).

Hint: Using part (a), it suffices to show that the infimum over all $f: V \rightarrow \mathbb{R}$ is actually attained by some $f$ that maps vertices in $V$ to $\{0,1\}$. To see this, consider the following steps:

- Suppose that $f: V \rightarrow \mathbb{R}$ takes on three distinct values, $a<b<c$. Consider a new function $f_{x}: V \rightarrow \mathbb{R}$, so that $f_{x}(u)=x$ if $f(u)=b$, and $f_{x}(u)=f(u)$ otherwise. That is, $f_{x}(u)$ just replaces the value $b$ with $x$. Show that either

$$
R\left(f_{a}\right) \leq R(f) \quad \text { or } \quad R\left(f_{c}\right) \leq R(f)
$$

where

$$
R(f)=\frac{\sum_{\{u, v\} \in E}|f(u)-f(v)|}{\sum_{\{u, v\} \in\binom{V}{2}}|f(u)-f(v)|} .
$$

(That is, by sliding the middle value $b$ towards either $a$ or $c$, you can decrease this quantity.)
Sub-hint: when you vary $x \in[a, c]$, you can get rid of the absolute values in $R\left(f_{x}\right)$. Looking at a small example might be helpful.

- Argue that the above logic implies that there's an $f$ that attains the infimum that takes on only two values.
- Argue that those two values may as well be 0 and 1.

3. Think about why the above extends to show that

$$
\phi(G)=\min _{f: V \rightarrow \mathbb{R}^{k}} \frac{\sum_{\{u, v\} \in E}\|f(u)-f(v)\|_{1}}{\sum_{\{u, v\} \in\binom{V}{2}}\|f(u)-f(v)\|_{1}},
$$

where the minimum is over all functions $f: V \rightarrow \mathbb{R}^{k}$ for any $k$.
Hint: You may want to use the inequality that $\frac{\sum_{i} a_{i}}{\sum_{i} b_{i}} \geq \min _{i} \frac{a_{i}}{b_{i}}$ for $a_{i}, b_{i}>0$.

### 4.2 A randomized algorithm

## Group Work

1. Based on the result that we got in the first group work, we might think of the following approach:

Find $f: V \rightarrow \mathbb{R}^{k}$ to minimize

$$
R(f):=\frac{\sum_{\{u, v\} \in E}\|f(u)-f(v)\|_{1}}{\sum_{\{u, v\} \in\binom{V}{2}}\|f(u)-f(v)\|_{1}}
$$

Unfortunately, this doesn't turn out to be an easy optimization problem to solve.

Instead, we'll consider the optimization problem:
Find values $d_{u, v} \in \mathbb{R}$ for all $u \neq v \in V$ to minimize

$$
Q(d):=\sum_{\{u, v\} \in E} d_{u, v}
$$

subject to:

- $d_{u, v}=d_{v, u} \geq 0$ for all $u, v$
- $d_{u, v}+d_{v, w} \geq d_{u, w}$ for all $u, v, w$
- $\sum_{\{u, v\} \in\binom{V}{2}} d_{u, v}=1$

It turns out that this problem can be solved efficiently, using linear programming. (If you don't know what that is, it's okay, all that matters now is that we can find $\vec{d}$ to minimize this efficiently).
(There's no question for this part, just understand the optimization problem.)
2. Suppose that $d^{*}$ is the minimizer of the problem above.

Explain why $Q\left(d^{*}\right) \leq \phi(G)$.
3. Find a randomized algorithm to approximate $\phi(G)$. More precisely, give a randomized algorithm that finds $f: V \rightarrow \mathbb{R}^{k}$ so that, with high probability,

$$
\frac{\sum_{\{u, v\} \in E}\|f(u)-f(v)\|_{1}}{\sum_{\{u, v\} \in\binom{V}{2}}\|f(u)-f(v)\|_{1}} \leq O(\log n) \phi(G)
$$

Hint: Your warm-up exercise might be relevant.
Hint: If it comes up, you may assume that Bourgain's embedding works just fine on pseudo-metrics, which are functions $d(u, v)$ that obey all of the axioms of metrics except that maybe $d(u, v)=0$ for $u \neq v$.
4. Given $f$ as in the previous part, explain how to efficiently find a set $S \subset V$ so that

$$
\phi(G, S) \leq O(\log n) \phi(G)
$$

Hint: Our proof in the first group-work was somewhat algorithmic...

