
CS265, Fall 2023

Class 7: Agenda and Questions

1 Announcements

• HW3 due Friday

2 Warm-Up

Group Work

Let G = (V,E) be a weighted, undirected graph, on n vertices with edge weights wuv

on the edge {u, v} ∈ E. Let d : V × V → R be the associated graph metric.

Explain how to efficiently find and apply a map f : V → Rk, for k = O(log2 n), so that∑
{u,v}∈E ∥f(u)− f(v)∥1∑

{u,v}∈(V2)
∥f(u)− f(v)∥1

≤ O(log n)

∑
{u,v}∈E d(u, v)∑

{u,v}∈(V2)
d(u, v)

holds with high probability. Above,
(
V
2

)
refers to the set of all unordered pairs {u, v} for

u, v ∈ V and u ̸= v.

3 Lecture Recap and Questions?

Any questions from the mini-lectures or pre-class-quiz? (Metric Embeddings; Bourgain’s
Embedding)

4 Sparsest Cuts

[Some slides; summary is below]
For a graph G = (V,E), define

ϕ(G,S) =
|E(S, S̄)|
|S||S̄|

,

and
ϕ(G) = min

S⊂V,S ̸=∅,V
ϕ(G,S),

where above S̄ := V \ S denotes the complement of S, and E(S, S̄) denotes the set of edges
that have one endpoint in S and one endpoint in S̄.
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Intuitively, if ϕ(G,S) is small, then S is pretty “disconnected” from S̄. Notice that the
denominator, |S||S̄|, is the number of edges that would be between S and S̄ in the complete
graph, so ϕ(G,S) is the fraction of possible edges between S and S̄ that actually exist in G.

Finding S to minimize ϕ(G,S) is useful, for example, in clustering applications. However,
it’s also NP-hard. Today we’ll see a randomized algorithm to find an S so that ϕ(G,S) is
approximately minimized. More precisely, we’ll find S so that ϕ(S,G) ≤ O(log n)ϕ(G).

Question: How is this definition of ϕ(G) different than simply asking for the minimum
cut? When might you prefer a sparsest cut to a min cut? (Recall we saw a randomized
algorithm for the minimum cut back in Week 1. . . )

4.1 Connection to metrics
Group Work

In this group work, you will show that

ϕ(G) = min
f

∑
{u,v}∈E ∥f(u)− f(v)∥1∑

{u,v}∈(V2)
∥f(u)− f(v)∥1

, (1)

where the minimum is over all functions f : V → Rk for some k, so that f takes on
at least two distinct values. (This last bit is needed so that the denominator doesn’t
vanish).

1. Show that

ϕ(G) = min
f :V→{0,1}

∑
{u,v}∈E |f(u)− f(v)|∑

{u,v}∈(V2)
|f(u)− f(v)|

,

where the minimum is over all functions f : V → {0, 1} so that f takes on both
values 0 and 1. (The difference between this and the expression above is that f
maps to {0, 1} instead of Rk for some k).

Hint: Consider mapping functions f to sets S by the relationship S = {u : f(u) =
1}.

2. Think about why the above extends to show that

ϕ(G) = inf
f :V→R

∑
{u,v}∈E |f(u)− f(v)|∑

{u,v}∈(V2)
|f(u)− f(v)|

,

where now the minimum is over f : V → R instead of f : V → {0, 1}.
(Don’t worry about a formal proof here, just kind of convince yourself intuitively
that this is true).

2



Hint: Using part (a), it suffices to show that the infimum over all f : V → R is
actually attained by some f that maps vertices in V to {0, 1}. To see this, consider
the following steps:

• Suppose that f : V → R takes on three distinct values, a < b < c. Consider
a new function fx : V → R, so that fx(u) = x if f(u) = b, and fx(u) = f(u)
otherwise. That is, fx(u) just replaces the value b with x. Show that either

R(fa) ≤ R(f) or R(fc) ≤ R(f),

where

R(f) =

∑
{u,v}∈E |f(u)− f(v)|∑

{u,v}∈(V2)
|f(u)− f(v)|

.

(That is, by sliding the middle value b towards either a or c, you can decrease
this quantity.)
Sub-hint: when you vary x ∈ [a, c], you can get rid of the absolute values in
R(fx). Looking at a small example might be helpful.

• Argue that the above logic implies that there’s an f that attains the infimum
that takes on only two values.

• Argue that those two values may as well be 0 and 1.

3. Think about why the above extends to show that

ϕ(G) = min
f :V→Rk

∑
{u,v}∈E ∥f(u)− f(v)∥1∑

{u,v}∈(V2)
∥f(u)− f(v)∥1

,

where the minimum is over all functions f : V → Rk for any k.

Hint: You may want to use the inequality that
∑

i ai∑
i bi

≥ mini
ai
bi

for ai, bi > 0.

4.2 A randomized algorithm

Group Work

1. Based on the result that we got in the first group work, we might think of the
following approach:

Find f : V → Rk to minimize

R(f) :=

∑
{u,v}∈E ∥f(u)− f(v)∥1∑

{u,v}∈(V2)
∥f(u)− f(v)∥1

Unfortunately, this doesn’t turn out to be an easy optimization problem to solve.
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Instead, we’ll consider the optimization problem:

Find values du,v ∈ R for all u ̸= v ∈ V to minimize

Q(d) :=
∑

{u,v}∈E

du,v

subject to:

• du,v = dv,u ≥ 0 for all u, v

• du,v + dv,w ≥ du,w for all u, v, w

•
∑

{u,v}∈(V2)
du,v = 1

It turns out that this problem can be solved efficiently, using linear programming.
(If you don’t know what that is, it’s okay, all that matters now is that we can find

d⃗ to minimize this efficiently).

(There’s no question for this part, just understand the optimization problem.)

2. Suppose that d∗ is the minimizer of the problem above.

Explain why Q(d∗) ≤ ϕ(G).

3. Find a randomized algorithm to approximate ϕ(G). More precisely, give a random-
ized algorithm that finds f : V → Rk so that, with high probability,∑

{u,v}∈E ∥f(u)− f(v)∥1∑
{u,v}∈(V2)

∥f(u)− f(v)∥1
≤ O(log n)ϕ(G).

Hint: Your warm-up exercise might be relevant.

Hint: If it comes up, you may assume that Bourgain’s embedding works just fine on
pseudo-metrics, which are functions d(u, v) that obey all of the axioms of metrics
except that maybe d(u, v) = 0 for u ̸= v.

4. Given f as in the previous part, explain how to efficiently find a set S ⊂ V so that

ϕ(G,S) ≤ O(log n)ϕ(G).

Hint: Our proof in the first group-work was somewhat algorithmic...
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