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1 Introduction
Definition 1. A metric space is a pair (X, d), where X is a set, and d : X ×X → R is the distance
function (also referred to as the metric), which satisfies the following conditions:

• For all x, y ∈ X d(x, x) = 0 and if x 6= y, d(x, y) = d(y, x) > 0.

• Triangle inequality: for all x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y).

The following examples illustrate some common metric spaces:

Example 2. Consider the `p metric space (Rk, dp), with the distance function

dp(x, y) =

(
k∑
i=1

|xi − yi|p
)1/p

.

In the case that p = 2, this is Euclidean distance, in the case that p = 1 this is sometimes referred to
as “Manhattan distance”. For p < 1, this is not a valid metric space because the triangle inequality
no longer holds for k ≥ 2, as can be seen by considering the points x = (0, 0), y = (1, 1), z = (0, 1).

Example 3. Given a graph on n points, with positive edge weights, the corresponding graph metric
(V, d) is defined by the vertex set V , with distance function d(x, y) being the length of the shortest-
path between x and y in the graph. Note that any finite metric (any metric (X, d) where X is a set of
finite cardinality) can be represented as the graph metric corresponding to the complete graph over
vertex set X , with the edge weights defined to be the corresponding distances.
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2 Low-distortion embeddings
`p metric spaces, especially `1, `2 and `∞ are especially nice to deal with, largely because there are
many algorithms which leverage the geometry of these spaces to efficiently solve problems. These
metrics also allow one to easily visualize the relationships between the points. This prompts the
fundamental question: to what extent can one embed one metric (X, d) into another (usually “nicer”
metric) (Y, d′) in such a way so that most of the distances are essentially preserved?

We might first hope for exact preservation of distances: that is, given metric spaces (X, dX)
and (Y, dY ), we might like a map f : X → Y so that dX(x, x′) = dY (f(x), f(x

′)) for all
x, x′ ∈ X . Such a map is called an isometric embedding. Sometimes these exist! For exam-
ple, you can check that, given an n point metric space X = {x1, . . . , xn} with metric d, the map
f(x) = (d(x, x1), d(x, x2), . . . , d(x, xn)) is an isometric embedding of (X, d) into (Rn, d∞).

However, isometric embeddings don’t always exist. For example, consider the metric space on
four points {x, y, z, w} so that d(x, y) = d(y, z) = d(z, w) = d(w, x) = 1, and d(x, z) = d(y, w) =
2. That is, this is the graph metric space where the underying graph is a square. I bet you can’t
embed this in `2! (Seriously, try it).

This raises the question of whether we can approximately preserve distances in an embedding.
This question can be formalized via the notion of the distortion of an embedding:

Definition 4. Given two metric spaces (X, d) and (Y, d′), and some function f : X → Y, we say
that f is an embedding of (X, d) into (Y, d′) with distortion α ≥ 1 if there is a scaling factor β such
that for all x, y ∈ X , it holds that β ·d(x, y) ≤ d′(f(x), f(y)) ≤ αβ ·d(x, y). And we say that (X, d)
can be embedded into (Y, d′) with distortion α if such a function f exists.

3 Bourgain’s Embedding
Perhaps the most important result in the area of metric embeddings is the following theorem, proved
by Bourgain in 1985 [2] (actually, he proved a slightly weaker result, giving an embedding into a
higher-dimensional space, the result below was made explicit by Linial, London, and Rabinovich in
1995 [3]):

Theorem 1. Given any finite metric (X, d) with |X| = n, there exists an embedding of (X, d) into
Rk under the `1 distance metric (actually, any `p metric), where k = O(log2 n), and the distortion
of the embedding is O(log n).

Remark 5. You might wonder if the parameters in the theorem above are the best possible. It turns
out that the distortion of O(log n) is the best possible, while the target dimension can be improved
to O(log n). See [1] for such an improvement.

The proof of this theorem is constructive: we will give a randomized construction of the embed-
ding, and prove that with high probability over the random choices of the construction, the resulting
embedding will have the desired distortion. We begin by defining the randomized embedding, and
then provide some intuition for this choice of embedding, and then prove the theorem.

The embedding will be defined in terms of k = c log2 n random sets, Si,j ⊂ X for i ∈
{1, 2, . . . , log n} and j ∈ {1, . . . , c log n} for some constant c that we will choose later. The set
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Si,j is chosen by including each point in X independently with probability 1
2i
. Given the sets, the

mapping f : X → Rk is defined by

f(x) = (d(x, S1,1), d(x, S1,2), . . . , d(x, Slogn,c logn)) ,

where d(x, S) = miny∈S d(x, y).
The intuition for this embedding is as follows: suppose we could pick a subset S ⊂ X such

that for every pair of points x, y we could guarantee that there is some point z ∈ S such that
d(x, z) ≤ d(x, y)/4, but no point in S has distance less than d(x, y)/2 from y. In that case, we
could simply define the embedding into R by f(x) = d(x, S), and such an embedding would have
constant distortion, and we would be done. Obviously no single set S can have this property; the
intuition for the above construction is that if we randomly pick a number of sets, Si,j , with the
sets having a large range of different sizes, then we can argue that, with very high probability, for
every pair of points x, y at least one of these sets will have the desired property with respect to the
pair x, y. To ensure that there is an appropriate sized set for each pair x, y, we need a logarithmic
number of different sizes, i.e. sizes roughly 2, 4, 8, . . . , n. To ensure that each pair is satisfied with
sufficiently high probability so as to allow us to perform a union bound over the n2 pairs, we will
need to have O(log n) redundancy for each size. Thus the O(log2 n) sets, and the geometrically
decreasing expected sizes of the sets. Because we can only expect a small number of the different
sized sets to be relevant for a given pair x, y, we will lose a logarithmic factor in the distortion. The
following proof formalizes this intuition.

Proof of Theorem 1. We begin by showing that for all x, y ||f(x) − f(y)||1 ≤ k · d(x, y). For the
coordinate corresponding to set Si,j , assume without loss of generality that d(x, Si,j) ≥ d(y, Si,j).
Let z ∈ Si,j satisfy d(y, Si,j) = d(y, z), and note that |d(x, Si,j)−d(y, Si,j)| = d(x, Si,j)−d(y, z) ≤
d(x, z) − d(y, z) ≤ d(x, y), where the last inequality holds by the triangle inequality. Hence the
contribution to the `1 distance from each coordinate is at most d(x, y), yielding the desired claim.

We now consider the meat of the proof—proving that ||f(x)− f(y)||1 ≥ k
b·lognd(x, y), for some

constant b, with high probability over the randomness of the construction of the sets Si,j. The proof
will proceed by showing that with high probability, for a given pair x, y, the claim holds. We will
then apply a union bound over all O(n2) such pairs.

Given a pair x, y ∈ X , define a set of distances 0 = δ0 < δ1 < . . . < δt. Let B(x, δ) = {z :
d(x, z) ≤ δ} denote the closed ball of radius δ centered at x, B−(x, δ) = {z : d(x, z) < δ} denote
the open ball of radius δ centered at x, and define δi to be the smallest δ such that both |B(x, δ)| ≥ 2i

and |B(y, δ)| ≥ 2i. Let t be the maximum i for which δi < d(x, y)/3, and let δt+1 = d(x, y)/3.
First observe that for i, j ≤ t+1, B(x, δi)∩B(y, δj) = ∅. Suppose that some set S ⊂ X has the

property that S ∩ B(x, δi) 6= ∅, but S ∩ B−(y, δi+1) = ∅. Then d(x, S) ≤ δi, and d(y, S) ≥ δi+1,
and hence |d(x, S)− d(y, S)| ≥ δi+1− δi. We now show that for each of our random sets Si,j, there
is a constant chance that it will have this property for δi+1, and hence there will be a significant
contribution to the `1 distance between f(x) and f(y) from the corresponding coordinates.

Note that from the definition of δi+1, it must be the case that either |B−(y, δi+1)| < 2i+1,
or |B−(x, δi+1)| < 2i+1, otherwise we would have picked a smaller value for δi+1. In the fol-
lowing, assume that |B−(y, δi+1)| < 2i+1; a symmetric argument would apply in the case that
|B−(x, δi+1)| < 2i+1. Leveraging the fact that the event that Si,j intersects B(x, δi) is independent
of the event that Si,j intersects B−(y, δi+1)—since these balls are disjoint, and the events that each
element of either ball is in the set is independent with probability 1/2i—we have the probability that
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Si,j ∩ B(x, δi) 6= ∅ and Si,j ∩ B−(y, δi+1) = ∅ is the product of the probabilities of each of these
separate events. Because there are at least 2i points in B(x, δi) the probability that at least one of
them is in Si,j is at least 1− (1− 1/2i)2

i ≥ 1− 1/e > 0.6. On the other hand, by assumption, there
are at most 2i+1 points in B−(y, δi+1), and the probability that they all avoid being in set Si,j is at
least (1 − 1/2i)2

i+1 ≥ 1/24. Hence for each i, the probability that Si,j contributes at least δi+1 − δi
to the `1 distance between f(x) and f(y) is bounded below by a constant > 1/25.

To finish the proof, we use a Chernoff bound to show that for a given i, the probability that
fewer than a 1/26 fraction of the c log n sets Si,j contribute at least δi+1 − δi to the distance is at
most e−

c logn

28 . (Here we used the fact that the expected number of such sets is c log n/25, and each
of these events is independent, and the probability that such a sum of independent indicators does
not exceed half its expectation is bounded by e−µ/8.) Setting c = 3 · 28, this probability is at most
1/n3, and hence via a union bound over the log n i’s and the O(n2) pairs x, y, it holds that with high
probability, for every pair x, y,

||f(x)− f(y)||1 =
∑
i,j

|d(x, Si,j)− d(y, Si,j)| ≥
c log n

26

t∑
i=0

(δi+1 − δi) ≥
k

26 log n
d(x, y)/3,

where the last inequality followed from the fact that this sum telescopes and δt+1 = d(x, y)/3, and
δ0 = 0.

This embedding also works for other `p distance metrics aside from just `1, (in fact, Bourgain
originally showed it for `2), and we might see this in class and/or on a problem set.
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