CS265, Fall 2023

Class 8: Agenda and Questions

1 Announcements

- HW3 due tomorrow!
- HW4 out now!

2 Recap and Questions

We'll do a quick recap of the JL lemma and the (approximate) nearest neighbors problem.

3 A better scheme for approximate nearest neighbors, and locality sensitive hashing

[A bit of lecture with setup. Summary below. This is also covered in the lecture notes.]

Recall the setup for *c*-approximate-nearest neighbors. We have a set *S* of size *n*, and for today $S \subset \mathbb{S}^d$ lives on the surface of the *d*-dimensional sphere. That is, $S = \{x_1, \ldots, x_n\}$, so that $x_i \in \mathbb{R}^{d+1}$ and $||x_i||_2 = 1$ for all $i \in [n]$.

Our goal is to come up with some data structure to store the x_i 's, so that:

- We don't use too much space (ideally, use space poly(n), where the exponent in the polynomial doesn't depend on d).
- Given $y \in \mathbb{S}^d$, we can find $x_i \in S$ so that

$$||x_i - y||_2 \le c \cdot \min_j ||x_j - y||_2$$

in time sublinear in n.

3.1 Nearest-Neighbors vs. Near Neighbors

[A bit of lecture, summary below and also in the lecture notes]

Consider the following problem, called (r, c)-near-neighbors. We have a set $S \subset \mathbb{S}^d$ of size n as before, and our goal is to come up with some data structure (that doesn't use too much space) to store the x_i 's, so that the following holds.

Given $y \in \mathbb{S}^d$ so that $\min_j ||x_j - y||_2 \leq r$, we can find $x_i \in S$, in sublinear time, so that $||x_i - y||_2 \leq cr$.

It turns out that if we can solve (r, c)-near-neighbors (for a decent range of r's) then we can solve c-nearest-neighbors.

3.2 A solution to (r, c)-near-neighbors

[A bit of lecture for setup; summary below and also in the lecture notes.]

Let s, k be parameters, chosen as follows:

$$s = \sqrt{n}, \qquad k = \frac{\pi \log n}{2r}$$

For $i = 1, \ldots, s$, let $A_i \in \mathbb{R}^{k \times d+1}$ have i.i.d. $\mathcal{N}(0, 1)$ entries. For $y \in \mathbb{S}^d$, define

 $h_i(y) = \operatorname{sign}(A_i y),$

where for a vector $a \in \mathbb{R}^k$, sign $(a) \in \{\pm 1\}^k$ is just the vector whose *i*'th entry is +1 if $a_i > 0$ and -1 if $a_i \leq 0$.

Group Work

1. Consider a hash function $h_i : \mathbb{S}^d \to \{\pm 1\}^k$ as defined above. Explain why " $h_i(x) = h_i(y)$ " has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in \mathbb{R}^d , and using them to slice up the sphere \mathbb{S}^d like this:

Then $h_i(x) = h_i(y)$ if and only if x and y are in the same "cell" of this slicing. For example, in the picture below $h_i(x) = h_i(y) \neq h_i(z)$.

Hint: Use the spherical symmetry of the Gaussian distribution.

2. Explain why, for $x, y \in \mathbb{S}^d$, and for any $i = 1, \ldots, s$,

$$\Pr[h_i(x) = h_i(y)] = \left(1 - \frac{\operatorname{angle}(x, y)}{\pi}\right)^k,$$

where $angle(x, y) = \arccos(x^T y)$ is the arc-cosine of the dot product of x and y, aka, the angle between x and y.

Hint: Think about the geometric intuition in the plane spanned by x and y.

3. Suppose that $x, y \in \mathbb{S}^d$. Fill in the blank, using the previous part:

$$\Pr[\forall i \in \{1, \dots, s\}, h_i(x) \neq h_i(y)] = \dots$$

(Don't worry about simplifying, you'll do that in the next part).

4. Let $x, y \in \mathbb{S}^d$ and suppose that the angle between x and y is pretty small. Using our choices of s and k above, along with extremely liberal use of the approximation that $1 - x \approx e^{-x}$ for small x, convince yourself that

$$\Pr[\forall i \in \{1, \dots, s\}, h_i(x) \neq h_i(y)] \approx \exp\left(-n^{1/2 - \operatorname{angle}(x, y)/(2r)}\right)$$

- 5. Fill in the blanks (assuming that your approximation from the previous step is valid):
 - (a) If $angle(x, y) \leq r$, then

$$\Pr[\exists i \in \{1, ..., s\} \text{ so that } h_i(x) = h_i(y)] \ge ...$$

(b) If $angle(x, y) \ge 5r$, then

 $\Pr[\exists i \in \{1, ..., s\} \text{ so that } h_i(x) = h_i(y)] \leq ...$

Suppose that \mathcal{H} is a family of hash functions $h : \mathbb{S}^d \to \mathcal{D}$. We say that \mathcal{H} is a *locality* sensitive hash (LSH) family (for the Euclidean metric, with some parameters R, C, p_1, p_2) if:

- If $||x y||_2 \le R$, then h(x) = h(y) with probability at *least* p_1 .
- If $||x y||_2 \ge CR$, then h(x) = h(y) with probability at most p_2 .

Thus, if we pretend that "angle(x, y)" was " $||x - y||_2$ ", we have just shown that the family of random hash functions from which we chose the h_i is a locality-sensitive hash family. (Actually, formally we showed something a bit different, since we looked at the probability of *any* collision over *s* functions drawn from the family).

In the next two problems, you'll see how to use this LSH family to solve the approximate near-neighbors problem.

Group Work

6. Pretend that "angle(x, y)" was " $||x - y||_2$ " everywhere.

Come up with a data structure that uses your result from problem 5b and show that it gives a (c, r)-near-neighbors scheme for some constant c. (It's okay if each query succeeds with probability 1/2 or something like that).

Hint: As your data structure, consider storing s hash tables, one for each h_i . Hash each item $x \in S$ into these tables. Given a query y, in what bucket(s) should you look for a close-by $x \in S$?

7. Explain why it's okay to pretend that "angle(x, y)" is " $||x - y||_2$," perhaps at the cost changing the constants around.

Hint: You can use the fact that

$$\frac{2}{\pi}\operatorname{angle}(x,y) \le \|x-y\|_2 \le \operatorname{angle}(x,y)$$

for any $x, y \in \mathbb{S}^d$.

8. (If you have time) What is the amount of space that your data structure uses? How much time does a query take?

Group Work

If you finish the rest, here's some bonus stuff to think about!

- 1. Why does a solution to (r, c)-near-neighbors give a solution to c-approximatenearest-neighbors?
- 2. What happens if our data don't live on the surface of \mathbb{S}^d ? Explain how to still use the analysis above.
- 3. Can you think of a way to come up with a better LSH family?
- 4. Can you think of a way to solve approximate near(est) neighbors without going through LSH? Is LSH necessary?