
CS265, Fall 2023

Class 8: Agenda and Questions

1 Announcements

• HW3 due tomorrow!

• HW4 out now!

2 Recap and Questions

We’ll do a quick recap of the JL lemma and the (approximate) nearest neighbors problem.

3 A better scheme for approximate nearest neighbors,

and locality sensitive hashing

[A bit of lecture with setup. Summary below. This is also covered in the lecture notes.]
Recall the setup for c-approximate-nearest neighbors. We have a set S of size n, and

for today S ⊂ Sd lives on the surface of the d-dimensional sphere. That is, S =
{x1, . . . , xn}, so that xi ∈ Rd+1 and ∥xi∥2 = 1 for all i ∈ [n].

Our goal is to come up with some data structure to store the xi’s, so that:

• We don’t use too much space (ideally, use space poly(n), where the exponent in the
polynomial doesn’t depend on d).

• Given y ∈ Sd, we can find xi ∈ S so that

∥xi − y∥2 ≤ c ·min
j

∥xj − y∥2

in time sublinear in n.

3.1 Nearest-Neighbors vs. Near Neighbors

[A bit of lecture, summary below and also in the lecture notes]
Consider the following problem, called (r, c)-near-neighbors. We have a set S ⊂ Sd of

size n as before, and our goal is to come up with some data structure (that doesn’t use too
much space) to store the xi’s, so that the following holds.

Given y ∈ Sd so that minj ∥xj − y∥2 ≤ r, we can find xi ∈ S, in sublinear time,
so that ∥xi − y∥2 ≤ cr.

It turns out that if we can solve (r, c)-near-neighbors (for a decent range of r’s) then we
can solve c-nearest-neighbors.

1

3.2 A solution to (r, c)-near-neighbors

[A bit of lecture for setup; summary below and also in the lecture notes.]
Let s, k be parameters, chosen as follows:

s =
√
n, k =

π log n

2r

For i = 1, . . . , s, let Ai ∈ Rk×d+1 have i.i.d. N (0, 1) entries. For y ∈ Sd, define

hi(y) = sign(Aiy),

where for a vector a ∈ Rk, sign(a) ∈ {±1}k is just the vector whose i’th entry is +1 if ai > 0
and −1 if ai ≤ 0.

Group Work

1. Consider a hash function hi : Sd → {±1}k as defined above. Explain why “hi(x) =
hi(y)” has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in Rd, and using them
to slice up the sphere Sd like this:

m

YI:¥¥Y*m
.

m

YI:¥¥Y*m
.

Then hi(x) = hi(y) if and only if x and y are in the same “cell” of this
slicing. For example, in the picture below hi(x) = hi(y) ̸= hi(z).

÷÷÷
hiCxI * hi ly) ⇒ some

hyprplanedoesth§
Hint: Use the spherical symmetry of the Gaussian distribution.

2

2. Explain why, for x, y ∈ Sd, and for any i = 1, . . . , s,

Pr[hi(x) = hi(y)] =

(
1− angle(x, y)

π

)k

,

where angle(x, y) = arccos(xTy) is the arc-cosine of the dot product of x and y,
aka, the angle between x and y.

Hint: Think about the geometric intuition in the plane spanned by x and y.

3. Suppose that x, y ∈ Sd. Fill in the blank, using the previous part:

Pr[∀i ∈ {1, . . . , s}, hi(x) ̸= hi(y)] =

(Don’t worry about simplifying, you’ll do that in the next part).

4. Let x, y ∈ Sd and suppose that the angle between x and y is pretty small. Using
our choices of s and k above, along with extremely liberal use of the approximation
that 1− x ≈ e−x for small x, convince yourself that

Pr[∀i ∈ {1, . . . , s}, hi(x) ̸= hi(y)] ≈ exp
(
−n1/2−angle(x,y)/(2r)

)
.

5. Fill in the blanks (assuming that your approximation from the previous step is
valid):

(a) If angle(x, y) ≤ r, then

Pr[∃i ∈ {1, . . . , s} so that hi(x) = hi(y)] ≥

(b) If angle(x, y) ≥ 5r, then

Pr[∃i ∈ {1, . . . , s} so that hi(x) = hi(y)] ≤ .

Suppose that H is a family of hash functions h : Sd → D. We say that H is a locality
sensitive hash (LSH) family (for the Euclidean metric, with some parameters R,C, p1, p2) if:

• If ∥x− y∥2 ≤ R, then h(x) = h(y) with probability at least p1.

• If ∥x− y∥2 ≥ CR, then h(x) = h(y) with probability at most p2.

Thus, if we pretend that “angle(x, y)” was “∥x − y∥2”, we have just shown that the family
of random hash functions from which we chose the hi is a locality-sensitive hash family.
(Actually, formally we showed something a bit different, since we looked at the probability
of any collision over s functions drawn from the family).

In the next two problems, you’ll see how to use this LSH family to solve the approximate
near-neighbors problem.

3

Group Work

6. Pretend that “angle(x, y)” was “∥x− y∥2” everywhere.

Come up with a data structure that uses your result from problem 5b and show
that it gives a (c, r)-near-neighbors scheme for some constant c. (It’s okay if each
query succeeds with probability 1/2 or something like that).

Hint: As your data structure, consider storing s hash tables, one for each hi. Hash
each item x ∈ S into these tables. Given a query y, in what bucket(s) should you
look for a close-by x ∈ S?

7. Explain why it’s okay to pretend that “angle(x, y)” is “∥x − y∥2,” perhaps at the
cost changing the constants around.

Hint: You can use the fact that

2

π
angle(x, y) ≤ ∥x− y∥2 ≤ angle(x, y)

for any x, y ∈ Sd.

8. (If you have time) What is the amount of space that your data structure uses?
How much time does a query take?

Group Work

If you finish the rest, here’s some bonus stuff to think about!

1. Why does a solution to (r, c)-near-neighbors give a solution to c-approximate-
nearest-neighbors?

2. What happens if our data don’t live on the surface of Sd? Explain how to still use
the analysis above.

3. Can you think of a way to come up with a better LSH family?

4. Can you think of a way to solve approximate near(est) neighbors without going
through LSH? Is LSH necessary?

4

	Announcements
	Recap and Questions
	A better scheme for approximate nearest neighbors, and locality sensitive hashing
	Nearest-Neighbors vs. Near Neighbors
	A solution to (r,c)-near-neighbors

