Class 8: Agenda and Questions

1 Announcements

- HW3 due tomorrow!
- HW4 out now!

2 Recap and Questions

We'll do a quick recap of the JL lemma and the (approximate) nearest neighbors problem.

3 A better scheme for approximate nearest neighbors, and locality sensitive hashing

[A bit of lecture with setup. Summary below. This is also covered in the lecture notes.]
Recall the setup for c-approximate-nearest neighbors. We have a set S of size n, and for today $S \subset \mathbb{S}^{d}$ lives on the surface of the d-dimensional sphere. That is, $S=$ $\left\{x_{1}, \ldots, x_{n}\right\}$, so that $x_{i} \in \mathbb{R}^{d+1}$ and $\left\|x_{i}\right\|_{2}=1$ for all $i \in[n]$.

Our goal is to come up with some data structure to store the x_{i} 's, so that:

- We don't use too much space (ideally, use space poly (n), where the exponent in the polynomial doesn't depend on d).
- Given $y \in \mathbb{S}^{d}$, we can find $x_{i} \in S$ so that

$$
\left\|x_{i}-y\right\|_{2} \leq c \cdot \min _{j}\left\|x_{j}-y\right\|_{2}
$$

in time sublinear in n.

3.1 Nearest-Neighbors vs. Near Neighbors

[A bit of lecture, summary below and also in the lecture notes]
Consider the following problem, called (r, c)-near-neighbors. We have a set $S \subset \mathbb{S}^{d}$ of size n as before, and our goal is to come up with some data structure (that doesn't use too much space) to store the x_{i} 's, so that the following holds.

Given $y \in \mathbb{S}^{d}$ so that $\min _{j}\left\|x_{j}-y\right\|_{2} \leq r$, we can find $x_{i} \in S$, in sublinear time, so that $\left\|x_{i}-y\right\|_{2} \leq c r$.

It turns out that if we can solve (r, c)-near-neighbors (for a decent range of r 's) then we can solve c-nearest-neighbors.

3.2 A solution to (r, c)-near-neighbors

[A bit of lecture for setup; summary below and also in the lecture notes.]
Let s, k be parameters, chosen as follows:

$$
s=\sqrt{n}, \quad k=\frac{\pi \log n}{2 r}
$$

For $i=1, \ldots, s$, let $A_{i} \in \mathbb{R}^{k \times d+1}$ have i.i.d. $\mathcal{N}(0,1)$ entries. For $y \in \mathbb{S}^{d}$, define

$$
h_{i}(y)=\operatorname{sign}\left(A_{i} y\right),
$$

where for a vector $a \in \mathbb{R}^{k}, \operatorname{sign}(a) \in\{ \pm 1\}^{k}$ is just the vector whose i 'th entry is +1 if $a_{i}>0$ and -1 if $a_{i} \leq 0$.

Group Work

1. Consider a hash function $h_{i}: \mathbb{S}^{d} \rightarrow\{ \pm 1\}^{k}$ as defined above. Explain why " $h_{i}(x)=$ $h_{i}(y)$ " has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in \mathbb{R}^{d}, and using them to slice up the sphere \mathbb{S}^{d} like this:

Lots of
hyperplanes
culting sphere.

Then $h_{i}(x)=h_{i}(y)$ if and only if x and y are in the same "cell" of this slicing. For example, in the picture below $h_{i}(x)=h_{i}(y) \neq h_{i}(z)$.

Hint: Use the spherical symmetry of the Gaussian distribution.
2. Explain why, for $x, y \in \mathbb{S}^{d}$, and for any $i=1, \ldots, s$,

$$
\operatorname{Pr}\left[h_{i}(x)=h_{i}(y)\right]=\left(1-\frac{\operatorname{angle}(x, y)}{\pi}\right)^{k}
$$

where $\operatorname{angle}(x, y)=\arccos \left(x^{T} y\right)$ is the arc-cosine of the dot product of x and y, aka, the angle between x and y.
Hint: Think about the geometric intuition in the plane spanned by x and y.
3. Suppose that $x, y \in \mathbb{S}^{d}$. Fill in the blank, using the previous part:

$$
\operatorname{Pr}\left[\forall i \in\{1, \ldots, s\}, h_{i}(x) \neq h_{i}(y)\right]=
$$

(Don't worry about simplifying, you'll do that in the next part).
4. Let $x, y \in \mathbb{S}^{d}$ and suppose that the angle between x and y is pretty small. Using our choices of s and k above, along with extremely liberal use of the approximation that $1-x \approx e^{-x}$ for small x, convince yourself that

$$
\operatorname{Pr}\left[\forall i \in\{1, \ldots, s\}, h_{i}(x) \neq h_{i}(y)\right] \approx \exp \left(-n^{1 / 2-\operatorname{angle}(x, y) /(2 r)}\right)
$$

5. Fill in the blanks (assuming that your approximation from the previous step is valid):
(a) If $\operatorname{angle}(x, y) \leq r$, then

$$
\operatorname{Pr}\left[\exists i \in\{1, \ldots, s\} \text { so that } h_{i}(x)=h_{i}(y)\right] \geq
$$

(b) If angle $(x, y) \geq 5 r$, then

$$
\operatorname{Pr}\left[\exists i \in\{1, \ldots, s\} \text { so that } h_{i}(x)=h_{i}(y)\right] \leq
$$

Suppose that \mathcal{H} is a family of hash functions $h: \mathbb{S}^{d} \rightarrow \mathcal{D}$. We say that \mathcal{H} is a locality sensitive hash (LSH) family (for the Euclidean metric, with some parameters R, C, p_{1}, p_{2}) if:

- If $\|x-y\|_{2} \leq R$, then $h(x)=h(y)$ with probability at least p_{1}.
- If $\|x-y\|_{2} \geq C R$, then $h(x)=h(y)$ with probability at most p_{2}.

Thus, if we pretend that "angle (x, y) " was " $\|x-y\|_{2}$ ", we have just shown that the family of random hash functions from which we chose the h_{i} is a locality-sensitive hash family. (Actually, formally we showed something a bit different, since we looked at the probability of any collision over s functions drawn from the family).

In the next two problems, you'll see how to use this LSH family to solve the approximate near-neighbors problem.

Group Work

6. Pretend that "angle (x, y) " was " $\|x-y\|_{2}$ " everywhere.

Come up with a data structure that uses your result from problem 5b and show that it gives a (c, r)-near-neighbors scheme for some constant c. (It's okay if each query succeeds with probability $1 / 2$ or something like that).
Hint: As your data structure, consider storing s hash tables, one for each h_{i}. Hash each item $x \in S$ into these tables. Given a query y, in what bucket(s) should you look for a close-by $x \in S$?
7. Explain why it's okay to pretend that "angle (x, y) " is " $\|x-y\|_{2}$," perhaps at the cost changing the constants around.
Hint: You can use the fact that

$$
\frac{2}{\pi} \operatorname{angle}(x, y) \leq\|x-y\|_{2} \leq \operatorname{angle}(x, y)
$$

for any $x, y \in \mathbb{S}^{d}$.
8. (If you have time) What is the amount of space that your data structure uses? How much time does a query take?

Group Work

If you finish the rest, here's some bonus stuff to think about!

1. Why does a solution to (r, c)-near-neighbors give a solution to c-approximate-nearest-neighbors?
2. What happens if our data don't live on the surface of \mathbb{S}^{d} ? Explain how to still use the analysis above.
3. Can you think of a way to come up with a better LSH family?
4. Can you think of a way to solve approximate near(est) neighbors without going through LSH? Is LSH necessary?
