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1 Sparsity
A vector x ∈ Rn is sparse if it has only a few large components. Sparsity shows up all over the
place in real-world data. For example, we hope that vectors indicating errors or anomolies will be
sparse. Even things that we might not think of as sparse—like natural images or human speech—
tend to be pretty sparse when they are transformed into the correct basis. In this lecture, we’ll
build on the ideas we saw in the previous lecture about the Johnson-Lindenstrauss transform to
see how to do dimension reduction for the set of sparse vectors, and an application of this called
compressed sensing.

2 Compressed Sensing
The mathematical set-up for the compressed sensing problem, introduced1 by Candés, Romberg
and Tao [1] and Donoho [2], is the following. Let A ∈ Rm×n be a matrix, with m ≤ n, and
suppose that x ∈ Rn is an (approximately) k-sparse vector. That is, x has only k nonzero entries,
or perhaps only k entries that are very large. The goal is, given y = Ax, recover x. If it weren’t
for the assumption of sparsity, this would be impossible: Ax = y is an under-determined linear
system, and there’s not a unique solution x. However, it turns out that, subject some conditions on
A, there is a unique sparse solution x, and moreover we can find it efficiently.

The motivation for compressed sensing comes from signal processing, in cases where it’s nat-
ural to recover some linear function of a signal. A motivational example is MRIs. Glossing over a
lot of details, each measurement that you take in an MRI is basically a Fourier coefficient of some
sparse vector. That is, if F is the n × n discrete Fourier transform (so, Fkj = e−2πikj/n), each

1The question of “sparse approximation” which is similar but is after slightly different guarantees and comes up in
different contexts, had already been around for a while, as had related problems like sparse regression in statistics.
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measurement looks like a component of the vector Fx, where x is sparse. The goal at the end of
the day is to recover x, which will allow us to recover the MRI image. One thing we could do at
this point is invert F to find x, but this is wasteful. Why take all those n measurements2 if we are
just after the k ≪ n nonzero entries of x? Taking fewer measurements corresponds to acquiring
the vector Ax, where A ∈ Rm×n consists of m rows of F . Then the problem is: can we recover
x (or something approximately like it) given the observations Ax? And this is the compressed
sensing problem described above. There are also examples of applications (like the “single-pixel
camera”) where we get to design the matrix A.

2.1 The Restricted Isometry Property
When can we recover a sparse vector x given Ax? Not every matrix A will work. For example,
suppose that A = [I|0] has an m×m identity matrix on the left and a bunch of zeros on the right.
Then there are plenty of sparse vectors in the kernel of A, so A would not work. The following
property is not only enough to guarantee that we can, in theory, recover x from Ax, but also that
we can do it efficiently.

Definition 1 (Restricted Isometry Property). A matrix A ∈ Rm×n has the restricted isometry prop-
erty (RIP) with parameters k and ε if, for every k-sparse vector x ∈ Rn,

(1− ε)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + ε)∥x∥2.

Above, we defined A and x above as being real, but they could be complex too and the definition
would be the same.

The RIP might look somewhat familiar: it’s a bit like the guarantee from the Johnson-Lindenstrauss
lemma. In that language, if A has the RIP with parameters 2k and ε, then multiplication by A is a
(1 +O(ε))-distortion embedding of the (infinite) set X of k-sparse vectors into Rm.

If A has the RIP with parameter 2k, then we can always recover a k-sparse vector x given Ax.
Indeed, suppose that x and x′ are two k-sparse vectors with Ax = Ax′. Then the RIP implies that
0 = ∥A(x − x′)∥ ≥ (1 − ε)∥x − x′∥2, which implies that x = x′. But it also proves something
stronger, which is that there’s an efficient algorithm to find x. We won’t go into that in these notes,
but the idea is that instead of solving the problem “find the sparsest x so that Ax = y” (which is
computationally intractable), we can solve the problem “find the x with the smallest ℓ1 norm so
that Ax = y” (which can be solved by linear programming). It turns out that if A has the RIP,
then the solutions to these two problems are the same, so we can efficiently recover an exactly
k-sparse vector. More generally, the RIP allows us to efficiently recover a nearly-k-sparse vector,
up to some error.

Theorem 1. Suppose that A has the RIP with parameters 2k and δ = Θ(1). Let x ∈ Rn be any
vector (not necessarily sparse). Then there is an efficient algorithm that, given A and Ax, can
recover x̂ so that

∥x− x̂∥1 ≤ C ∥x− xk∥1
2In this example, more measurements correspond to more time you actually spend in the MRI. If you have ever

had an MRI, you understand why it’s desirable to minimize this.
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where C is some constant and xk is the vector consisting of the largest k components of x.

We won’t prove that theorem here, but see [3] for a nice textbook with some more details about
compressed sensing, or the CS168 lecture notes (https://web.stanford.edu/class/
cs168/l/l17.pdf) for some intuition.

Thus, our goal is to find matrices with the RIP, where m is as small as possible. And this is
where randomness comes in. There’s no probability in the definition of the RIP, so can’t we just
find some deterministic A that does the job and call it a day? Perhaps we could, but giving a
deterministic construction with close to the best possible m is still an open question! On the other
hand, there are many randomized constructions that work.

2.2 A random Gaussian matrix has the RIP with high probability
A natural matrix to study—motivated by the MRI example above as well as many other applications—
is the “rows-of-a-DFT” matrix mentioned above. It turns out that this does have the RIP with high
probability if you take random rows, but that proof is just a bit beyond the tools we have right
now. Check out [4] for one nice proof if you’re curious. Instead, we’ll prove that a matrix A with
independent Gaussian entries Aij ∼ N(0, 1/m) has the RIP.

Theorem 2. Let δ ∈ (0, 1) and choose integers k and n. There is some m = O
(
k logn
δ2

)
so that,

with probability at least 1− o(1), a matrix A ∈ Rm×n with independent entries Aij ∼ N(0, 1/m)
has the RIP with parameters k and δ.

First, notice that it suffices to prove the theorem for k-sparse x with ∥x∥2 = 1. Thus, we will
restrict our attention to only these unit-norm vectors x from now on. Let

Σk = {x ∈ Rn : ∥x∥2 = 1 and x is k-sparse}

be the set of unit-norm k-sparse vectors.
Our first thought might be to do something like we did when we proved the Johnson-Lindenstrauss

lemma. First, show that for any fixed k-sparse x, ∥Ax∥2 ≈ ∥x∥2 with really high probablity. Then,
union bound over all possible x’s. The obvious catch here is that, in this case, we have infinitely
many x’s to union bound over! Instead, we’ll use a technique called an ε-covering to turn this into
only a finite union bound.

Definition 2 (ε-covering). An ε-covering of a set X ⊆ Rn is a finite set N so that for every x ∈ X ,
there is some y ∈ N so that ∥x− y∥2 ≤ ε.

First, we’ll show that Σk has a small ε-covering, for ε = δ/4. We’ll start by showing that
there’s a small ε-covering for all of the vectors with a particular support S of size k, and then we’ll
take the union of all

(
n
k

)
such coverings to get our final covering.

Lemma 3.
X =

{
x ∈ Rk : ∥x∥2 = 1

}
has an ε-covering of size at most (3/ε)k.
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Proof. For a point y, let the set B(y; ε) denotes the ball of radius ε about y. We will construct the
set N ⊂ X greedily as follows. While the set

X \

(⋃
y∈N

B(y; ε)

)
,

is not empty, take any point z ∈ X \
(⋃

y∈N B(y; ε)
)

and add it to N .
The set that we end up with at the end of this algorithm is definitely an ε-covering, so we just

need to show that it is not too big. Notice that for all y, y′ ∈ N , we have ∥y − y′∥2 ≥ ε. This
is because if ∥y − y′∥2 < ε, we wouldn’t have added both of them to our covering. Therefore,
the set of balls B(y; ε/2) for y ∈ N are disjoint. Moreover, all of these balls lie in the larger ball
B(0, 1 + ε/2). This is because all of the centers y ∈ N have ∥y∥2 = 1. Then, we have

|N | · Vol(B(0; ε/2)) ≤ Vol(B(0; 1 + ε/2)),

where Vol denotes the k-dimensional volume. If you’ve forgotten the formula for the k-dimensional
volume of a ball in Rk, the important thing is that it looks like Vol(B(0; ρ)) = Ck · ρk, for some
constant Ck. Thus, the above implies that

|N | ≤ Vol(B(0; 1 + ε/2))

Vol(B(0; ε/2))
=

(
1 + ε/2

ε/2

)k

≤
(
3

ε

)k

for ε < 1.

Corollary 4. Let ε ∈ (0, 1). There is an ε-covering of Σk of size at most
(
n
k

) (
3
ε

)k.

Let N be the ε-covering from Corollary 4, for ε = δ/4. We’ll use a union bound to show that
with high probability, for any y ∈ N , ∥y∥2 ≈ ∥Ay∥2. More precisely, we can re-use the argument
from the proof of the Johnson-Lindenstrauss lemma to say that, for any fixed y ∈ Rn,

Pr[| ∥y∥2 − ∥Ay∥2 | > ε ∥y∥2] ≤ 2 exp(−c · ε2m),

for some constant c. (We won’t write it out again here, but go back to those notes and check that
this still applies). Thus, by a union bound over all y ∈ N , we see that for any y ∈ N , we have

(1− ε)∥y∥2 ≤ ∥Ay∥2 ≤ (1 + ε)∥y∥2 (1)

with probability at least(
n

k

)
· (3/ε)k · 2 exp(−cε2m) ≤ exp

(
k log n+ k log(3/ε)− cε2m

)
≤ exp(−Ω(k log n)),

for some appropriate choice of m = O
(
k logn
ε2

)
. Let’s assume that this event occurs, so that

| ∥y∥2 − ∥Ay∥2 | ≤ ε ∥y∥2 = ε ∀y ∈ N . (2)
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Finally, we need to show that ∥Ay∥2 ≈ ∥y∥2 for any y ∈ Σk, not just for y ∈ N .
Suppose that δ∗ is the smallest δ′ so that | ∥Az∥2 − ∥z∥2 | ≤ δ′ ∥z∥2 for any k-sparse vector z.

(That is, our eventual goal is to show that δ∗ ≤ δ). Choose any x ∈ Σk, and let y ∈ N be such that
∥x− y∥2 ≤ ε. Notice that we can choose y so that x− y is k-sparse, using our construction of N .
Then,

| ∥Ax∥2 − ∥x∥2 | ≤ ∥A(x− y)∥2 + ∥x− y∥2 + | ∥Ay∥2 − ∥y∥2 |
≤ (1 + δ∗)ε+ ε+ ε,

using the triangle inequality in the first line, and the definition of δ∗, as well as (2) in the second
line.

But, since δ∗ is the smallest value that satisfies this, we have

δ∗ ≤ (1 + δ∗)ε+ 2ε,

and solving for δ∗ this implies that

δ∗ ≤ 3ε

1− ε
≤ 4ε = δ

provided that ε is sufficiently small. This proves the theorem.
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